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Abstract. Few-shot learning aims to train efficient predictive models
with a few examples. The lack of training data leads to poor models
that perform high-variance or low-confidence predictions. In this paper,
we propose to meta-learn the ensemble of epoch-wise empirical Bayes
models (E3BM) to achieve robust predictions. “Epoch-wise” means that
each training epoch has a Bayes model whose parameters are specifically
learned and deployed. “Empirical” means that the hyperparameters, e.g.,
used for learning and ensembling the epoch-wise models, are generated by
hyperprior learners conditional on task-specific data. We introduce four
kinds of hyperprior learners by considering inductive vs. transductive,
and epoch-dependent vs. epoch-independent, in the paradigm of meta-
learning. We conduct extensive experiments for five-class few-shot tasks
on three challenging benchmarks: miniImageNet, tieredImageNet, and
FC100, and achieve top performance using the epoch-dependent trans-
ductive hyperprior learner, which captures the richest information. Our
ablation study shows that both “epoch-wise ensemble” and “empirical”
encourage high efficiency and robustness in the model performance1.

1 Introduction

The ability of learning new concepts from a handful of examples is well-handled
by humans, while in contrast, it remains challenging for machine models whose
typical training requires a significant amount of data for good performance [34].
However, in many real-world applications, we have to face the situations of lack-
ing a significant amount of training data, as e.g., in the medical domain. It is
thus desirable to improve machine learning models to handle few-shot settings
where each new concept has very scarce examples [13,30,39,70].

Meta-learning methods aim to tackle the few-shot learning problem by trans-
ferring experience from similar few-shot tasks [7]. There are different meta strate-
gies, among which the gradient descent based methods are particularly promis-
ing for today’s neural networks [1, 13–15, 20, 25, 38, 70, 74, 81, 83, 84, 86]. These
methods follow a unified meta-learning procedure that contains two loops. The

1 Our code is open-sourced at https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/e3bm.

https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/e3bm
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Fig. 1. Conceptual illustrations of the model adaptation on the blue, red and yellow
tasks. (a) MAML [13] is the classical inductive method that meta-learns a network
initialization θ that is used to learn a single base-learner on each task, e.g., Θa3 in the
blue task. (b) SIB [25] is a transductive method that formulates a variational posterior
as a function of both labeled training data T (tr) and unlabeled test data x(te). It
also uses a single base-learner and optimizes the learner by running several synthetic
gradient steps on x(te). (c) Our E3BM is a generic method that learns to combine the
epoch-wise base-learners (e.g., Θ1, Θ2, and Θ3), and to generate task-specific learning
rates α and combination weights v that encourage robust adaptation. Θ̄1:3 denotes the
ensemble result of three base-learners; Ψα and Ψv denote the hyperprior learners learned
to generate α and v, respectively. Note that figure (c) is based on E3BM+MAML, i.e.,
plug-in our E3BM to MAML baseline. Other plug-in versions are introduced in Sec. 4.4.

inner loop learns a base-learner for each individual task, and the outer loop uses
the validation loss of the base-learner to optimize a meta-learner. In previous
works [1, 13, 14, 70], the task of the meta-learner is to initialize the base-learner
for the fast and efficient adaptation to the few training samples in the new task.

In this work, we aim to address two shortcomings of the previous works. First,
the learning process of a base-learner for few-shot tasks is quite unstable [1], and
often results in high-variance or low-confidence predictions. An intuitive solution
is to train an ensemble of models and use the combined prediction which should
be more robust [6,29,54]. However, it is not obvious how to obtain and combine
multiple base-learners given the fact that a very limited number of training exam-
ples are available. Rather than learning multiple independent base-learners [79],
we propose a novel method of utilizing the sequence of epoch-wise base-learners
(while training a single base-learner) as the ensemble. Second, it is well-known
that the values of hyperparameters, e.g., for initializing and updating models,
are critical for best performance, and are particularly important for few-shot
learning. In order to explore the optimal hyperparameters, we propose to em-
ploy the empirical Bayes method in the paradigm of meta-learning. In specific,
we meta-learn hyperprior learners with meta-training tasks, and use them to
generate task-specific hyperparameters, e.g., for updating and ensembling mul-
tiple base-learners. We call the resulting novel approach E3BM, which learns
the Ensemble of Epoch-wise Empirical Bayes Models for each few-shot task.



An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning 3

Our “epoch-wise models” are different models since each one of them is resulted
from a specific training epoch and is trained with a specific set of hyperparameter
values. During test, E3BM combines the ensemble of models’ predictions with
soft ensembling weights to produce more robust results. In this paper, we argue
that during model adaptation to the few-shot tasks, the most active adapting
behaviors actually happen in the early epochs, and then converge to and even
overfit to the training data in later epochs. Related works use the single base-
learner obtained from the last epoch, so their meta-learners learn only partial
adaptation experience [13, 14, 25, 70]. In contrast, our E3BM leverages an en-
semble modeling strategy that adapts base-learners at different epochs and each
of them has task-specific hyperparameters for updating and ensembling. It thus
obtains the optimized combinational adaptation experience. Figure 1 presents
the conceptual illustration of E3BM, compared to those of the classical method
MAML [13] and the state-of-the-art SIB [25].

Our main contributions are three-fold. (1) A novel few-shot learning ap-
proach E3BM that learns to learn and combine an ensemble of epoch-wise Bayes
models for more robust few-shot learning. (2) Novel hyperprior learners in E3BM
to generate the task-specific hyperparameters for learning and combining epoch-
wise Bayes models. In particular, we introduce four kinds of hyperprior learner by
considering inductive [13, 70] and transductive learning methods [25], and each
with either epoch-dependent (e.g., LSTM) or epoch-independent (e.g., epoch-
wise FC layer) architectures. (3) Extensive experiments on three challenging
few-shot benchmarks, miniImageNet [73], tieredImageNet [58] and Fewshot-
CIFAR100 (FC100) [53]. We plug-in our E3BM to the state-of-the-art few-shot
learning methods [13,25,70] and obtain consistent performance boosts. We con-
duct extensive model comparison and observe that our E3BM employing an
epoch-dependent transductive hyperprior learner achieves the top performance
on all benchmarks.

2 Related Works

Few-shot learning & meta-learning. Research literature on few-shot learning
paradigms exhibits a high diversity from using data augmentation techniques [9,
75,77] over sharing feature representation [2,76] to meta-learning [18,72]. In this
paper, we focus on the meta-learning paradigm that leverages few-shot learning
experiences from similar tasks based on the episodic formulation (see Section 3).
Related works can be roughly divided into three categories. (1) Metric learn-
ing methods [12, 24, 40, 41, 64, 71, 73, 78, 82] aim to learn a similarity space, in
which the learning should be efficient for few-shot examples. The metrics in-
clude Euclidean distance [64], cosine distance [8,73], relation module [24,41,71]
and graph-based similarity [45, 62]. Metric-based task-specific feature represen-
tation learning has also been presented in many related works [12,24,41,78]. (2)
Memory network methods [50, 52, 53] aim to learn training “experience” from
the seen tasks and then aim to generalize to the learning of the unseen ones. A
model with external memory storage is designed specifically for fast learning in a
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few iterations, e.g., Meta Networks [52], Neural Attentive Learner (SNAIL) [50],
and Task Dependent Adaptive Metric (TADAM) [53]. (3) Gradient descent based
methods [1, 13,14,20,25,37,38,43,57,70,86] usually employ a meta-learner that
learns to fast adapt an NN base-learner to a new task within a few optimization
steps. For example, Rusu et al. [61] introduced a classifier generator as the meta-
learner, which outputs parameters for each specific task. Lee et al. [37] presented
a meta-learning approach with convex base-learners for few-shot tasks. Finn et
al. [13] designed a meta-learner called MAML, which learns to effectively initial-
ize the parameters of an NN base-learner for a new task. Sun et al. [69,70] intro-
duced an efficient knowledge transfer operator on deeper neural networks and
achieved a significant improvement for few-shot learning models. Hu et al. [25]
proposed to update base-learner with synthetic gradients generated by a varia-
tional posterior conditional on unlabeled data. Our approach is closely related
to gradient descent based methods [1, 13,25, 69,70, 70]. An important difference
is that we learn how to combine an ensemble of epoch-wise base-learners and
how to generate efficient hyperparameters for base-learners, while other methods
such as MAML [13], MAML++ [1], LEO [61], MTL [69,70], and SIB [25] use a
single base-learner.

Hyperparameter optimization. Building a model for a new task is a process
of exploration-exploitation. Exploring suitable architectures and hyperparam-
eters are important before training. Traditional methods are model-free, e.g.,
based on grid search [4,28,42]. They require multiple full training trials and are
thus costly. Model-based hyperparameter optimization methods are adaptive but
sophisticated, e.g., using random forests [27], Gaussian processes [65] and input
warped Gaussian processes [67] or scalable Bayesian optimization [66]. In our
approach, we meta-learn a hyperprior learner to output optimal hyperparam-
eters by gradient descent, without additional manual labor. Related methods
using gradient descent mostly work for single model learning in an inductive
way [3, 10, 15, 44, 46–49]. While, our hyperprior learner generates a sequence of
hyperparameters for multiple models, in either the inductive or the transductive
learning manner.

Ensemble modeling. It is a strategy [26, 85] to use multiple algorithms to
improve machine learning performance, and which is proved to be effective to
reduce the problems related to overfitting [35, 68]. Mitchell et al. [51] provided
a theoretical explanation for it. Boosting is one classical way to build an en-
semble, e.g., AdaBoost [16] and Gradient Tree Boosting [17]. Stacking combines
multiple models by learning a combiner and it applies to both tasks in super-
vised learning [6, 29, 54] and unsupervised learning [63]. Bootstrap aggregating
(i.e., Bagging) builds an ensemble of models through parallel training [6], e.g.,
random forests [22]. The ensemble can also be built on a temporal sequence
of models [36]. Some recent works have applied ensemble modeling to few-shot
learning. Yoon et al. proposed Bayesian MAML (BMAML) that trains multiple
instances of base-model to reduce mete-level overfitting [80]. The most recent
work [11] encourages multiple networks to cooperate while keeping predictive
diversity. Its networks are trained with carefully-designed penalty functions, dif-
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ferent from our automated method using empirical Bayes. Besides, its method
needs to train much more network parameters than ours. Detailed comparisons
are given in the experiment section.

3 Preliminary

In this section, we introduce the unified episodic formulation of few-shot learning,
following [13, 57, 73]. This formulation was proposed for few-shot classification
first in [73]. Its problem definition is different from traditional classification in
three aspects: (1) the main phases are not training and test but meta-training
and meta-test, each of which includes training and test; (2) the samples in meta-
training and meta-testing are not datapoints but episodes, i.e. few-shot classi-
fication tasks; and (3) the objective is not classifying unseen datapoints but to
fast adapt the meta-learned knowledge to the learning of new tasks.

Given a dataset D for meta-training, we first sample few-shot episodes (tasks)
{T } from a task distribution p(T ) such that each episode T contains a few
samples of a few classes, e.g., 5 classes and 1 shot per class. Each episode T
includes a training split T (tr) to optimize a specific base-learner, and a test split
T (te) to compute a generalization loss to optimize a global meta-learner. For
meta-test, given an unseen dataset Dun (i.e., samples are from unseen classes),
we sample a test task Tun to have the same-size training/test splits. We first
initiate a new model with meta-learned network parameters (output from our

hyperprior learner), then train this model on the training split T (tr)
un . We finally

evaluate the performance on the test split T (te)
un . If we have multiple tasks, we

report average accuracy as the final result.

4 An Ensemble of Epoch-wise Empirical Bayes Models

As shown in Fig. 2, E3BM trains a sequence of epoch-wise base-learners {Θm}
with training data T (tr) and learns to combine their predictions {z(te)m } on test
data x(te) for the best performance. This ensembling strategy achieves more
robustness during prediction. The hyperparameters of each base-learner, i.e.,
learning rates α and combination weights v, are generated by the hyperprior
learners conditional on task-specific data, e.g., x(tr) and x(te). This approach
encourages the high diversity and informativeness of the ensembling models.

4.1 Empirical Bayes method

Our approach can be formulated as an empirical Bayes method that learns two
levels of models for a few-shot task. The first level has hyperprior learners that
generate hyperparameters for updating and combining the second-level models.
More specifically, these second-level models are trained with the loss derived
from the combination of their predictions on training data. After that, their loss
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Fig. 2. The computing flow of the proposed E3BM approach in one meta-training
episode. For the meta-test task, the computation will be ended with predictions. Hyper-
learner predicts task-specific hyperparameters, i.e., learning rates and multi-model com-
bination weights. When its input contains x(te), it is transductive, otherwise inductive.
Its detailed architecture is given in Fig. 3.

of test data are used to optimize the hyperprior learners. This process is also
called meta update, see the dashed arrows in Fig. 2.

In specific, we sample K episodes {Tk}Kk=1 from the meta-training data D.
Let Θ denote base-learner and ψ represent its hyperparameters. An episode Tk
aims to train Θ to recognize different concepts, so we consider to use concepts
related (task specific) data for customizing the Θ through a hyperprior p(ψk).
To achieve this, we first formulate the empirical Bayes method with marginal
likelihood according to hierarchical structure among data as follows,

p(T ) =

K∏
k=1

p(Tk) =

K∏
k=1

∫
ψk

p(Tk|ψk)p(ψk)dψk. (1)

Then, we use variational inference [23] to estimate {p(ψk)}Kk=1. We parametrize
distribution qϕk(ψk) with ϕk for each p(ψk), and update ϕk to increase the sim-
ilarity betweeen qϕk(ψk) and p(ψk). As in standard probabilistic modeling, we
derive an evidence lower bound on the log version of Eq. (1) to update ϕk,

log p(T ) >
K∑
k=1

[
Eψk∼qϕk

[
log p(Tk|ψk)

]
−DKL(qϕk(ψk)||p(ψk))

]
. (2)

Therefore, the problem of using qϕk(ψk) to approach to the best estimation
of p(ψk) becomes equivalent to the objective of maximizing the evidence lower
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bound [5,23,25] in Eq. (2), with respect to {ϕk}Kk=1, as follows,

min
{ϕk}Kk=1

1

K

K∑
k=1

[
Eψk∼qϕk

[
− log p(Tk|ψk)

]
+DKL(qϕk(ψk)||p(ψk))

]
. (3)

mean
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’

mean

concat
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(a) Epoch-independent (b) Epoch-dependent

FC

Fig. 3. Two options of hyperprior learner at the
m-th base update epoch. In terms of the map-
ping function, we deploy either FC layers to build
epoch-independent hyperprior learners, or LSTM
to build an epoch-dependent learner. Values in
dashed box were learned from previous tasks.

To improve the robustness
of few-shot models, existing
methods sample a significant
amount number of episodes dur-
ing meta-training [13, 70]. Each
episode employing its own hy-
perprior p(ψk) causes a huge
computation burden, making it
difficult to solve the aforemen-
tioned optimization problem. To
tackle this, we leverage a tech-
nique called “amortized varia-
tional inference” [25, 32, 59]. We
parameterize the KL term in
{ϕk}Kk=1 (see Eq. (3)) with a
unified deep neural network Ψ(·)
taking x

(tr)
k (inductive learn-

ing) or {x(tr)k , x
(te)
k } (transduc-

tive learning) as inputs, where

x
(tr)
k and x

(te)
k respectively de-

note the training and test sam-
ples in the k-th episode. In this
paper, we call Ψ(·) hyperprior
learner. As shown in Fig. 3, we
additionally feed the hyperprior
learner with the training gradi-

ents ∇LΘ(T (tr)
k ) to Ψ(·) to en-

courage it to “consider” the cur-
rent state of the training epoch. We mentioned in Sec. 1 that base-learners at
different epochs are adapted differently, so we expect the corresponding hyper-
prior learner to “observe” and “utilize” this information to produce effective
hyperparameters. By replacing qϕk with qΨ(·), Problem (3) can be rewritten as:

min
Ψ

1

K

K∑
k=1

[
Eψk∼qΨ(·)

[
− log p(Tk|ψk)

]
+DKL(qΨ(·)(ψk)||p(ψk))

]
. (4)

Then, we solve Problem (4) by optimizing Ψ(·) with the meta gradient descent
method used in classical meta-learning paradigms [13, 25, 70]. We elaborate the
details of learning {Θm} and meta-learning Ψ(·) in the following sections.
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4.2 Learning the ensemble of base-learners

Previous works have shown that training multiple instances of the base-learner
is helpful to achieve robust few-shot learning [12,79]. However, they suffer from
the computational burden of optimizing multiple copies of neural networks in
parallel, and are not easy to generalize to deeper neural architectures. If include
the computation of second-order derivatives in meta gradient descent [13], this
burden becomes more unaffordable. In contrast, our approach is free from this
problem, because it is built on top of optimization-based meta-learning models,
e.g., MAML [13], MTL [70], and SIB [25], which naturally produce a sequence
of models along the training epochs in each episode.

Given an episode T = {T (tr), T (te)} = {{x(tr), y(tr)}, {x(te), y(te)}}, let Θm
denote the parameters of the base-learner working at epoch m (w.r.t. m-th base-
learner or BL-m), with m ∈ {1, ...,M}. Basically, we initiate BL-1 with param-
eters θ (network weights and bias) and hyperparameters (e.g., learning rate α),
where θ is meta-optimized as in MAML [13], and α is generated by the proposed
hyperprior learner Ψα. We then adapt BL-1 with normal gradient descent on the
training set T (tr), and use the adapted weights and bias to initialize BL-2. The
general process is thus as follows,

Θ0 ← θ, (5)

Θm ← Θm−1 − αm∇ΘL(tr)
m = Θm−1 − Ψα(τ,∇ΘL(tr)

m )∇ΘL(tr)
m , (6)

where αm is the learning rate outputted from Ψα, and ∇ΘL(tr)
m are the deriva-

tives of the training loss, i.e, gradients. τ represents either x(tr) in the inductive
setting, or {x(tr), x(te)} in the transductive setting. Note that Θ0 is introduced to
make the notation consistent, and a subscript m is omitted from Ψα for concise-
ness. Let F (x;Θm) denote the prediction scores of input x, so the base-training
loss T (tr) =

{
x(tr), y(tr)

}
can be unfolded as,

L(tr)
m = Lce

(
F (x(tr);Θm−1), y(tr)

)
, (7)

where Lce is the softmax cross entropy loss. During episode test, each base-
learner BL-m infers the prediction scores zm for test samples x(te),

zm = F (x(te);Θm). (8)

Assume the hyperprior learner Ψv generates the combination weight vm for

BL-m. The final prediction score is initialized as ŷ
(te)
1 = v1z1 . For the m-th base

epoch, the prediction zm will be calculated and added to ŷ(te) as follows,

ŷ(te)m ← vmzm + ŷ
(te)
m−1 = Ψv(τ,∇ΘL(tr)

m )F (x(te);Θm) + ŷ
(te)
m−1. (9)

In this way, we can update prediction scores without storing base-learners or
feature maps in the memory.
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4.3 Meta-learning the hyperprior learners

As presented in Fig. 3, we introduce two architectures, i.e., LSTM or individual
FC layers, for the hyperprior learner. FC layers at different epochs are indepen-
dent. Using LSTM to “connect” all epochs is expected to “grasp” more task-
specific information from the overall training states of the task. In the following,
we elaborate the meta-learning details for both designs.

Assume before the k-th episode, we have meta-learned the base learning
rates {α′m}Mm=1 and combination weights {v′m}Mm=1. Next in the k-th episode,
specifically at the m-th epoch as shown in Fig. 3, we compute the mean values of

τ and ∇ΘmL
(tr)
m , respectively, over all samples2. We then input the concatenated

value to FC or LSTM mapping function as follows,

∆αm, ∆vm = FCm(concat[τ̄ ;∇ΘmL
(tr)
m ]), or (10)

[∆αm, ∆vm], hm = LSTM(concat[τ̄ ;∇ΘmL
(tr)
m ], hm−1), (11)

where hm and hm−1 are the hidden states at epoch m and epoch m− 1, respec-
tively. We then use the output values to update hyperparameters as,

αm = λ1α
′
m + (1− λ1)∆α, vm = λ2v

′
m + (1− λ2)∆v, (12)

where λ1 and λ2 are fixed fractions in (0, 1). Using learning rate αm, we update
BL-(m−1) to be BL-m with Eq. (6). After M epochs, we obtain the combination

of predictions ŷ
(te)
M (see Eq. (9)) on test samples. In training tasks, we compute

the test loss as,

L(te) = Lce(ŷ
(te)
M , y(te)). (13)

We use this loss to calculate meta gradients to update Ψ as follows,

Ψα ← Ψα − β1∇ΨαL(te), Ψv ← Ψv − β2∇ΨvL(te), (14)

where β1 and β2 are meta-learning rates that determine the respective stepsizes
for updating Ψα and Ψv. These updates are to back-propagate the test gradients
till the input layer, through unrolling all base training gradients ofΘ1 ∼ ΘM . The
process thus involves a gradient through a gradient [13,14,70]. Computationally,
it requires an additional backward pass through L(tr) to compute Hessian-vector
products, which is supported by standard numerical computation libraries such
as TensorFlow [19] and PyTorch [55].

4.4 Plugging-in E3BM to baseline methods

The optimization of Ψ relies on meta gradient descent method which was first
applied to few-shot learning in MAML [13]. Recently, MTL [70] showed more effi-
ciency by implementing that method on deeper pre-trained CNNs (e.g., ResNet-
12 [70], and ResNet-25 [69]). SIB [25] was built on even deeper and wider net-
works (WRN-28-10), and it achieved top performance by synthesizing gradients

2 In the inductive setting, training images are used to compute τ̄ ; while in the trans-
ductive setting, test images are additionally used.
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in transductive learning. These three methods are all optimization-based, and
use the single base-learner of the last base-training epoch. In the following, we
describe how to learn and combine multiple base-learners in MTL, SIB and
MAML, respectively, using our E3BM approach.

According to [25, 70], we pre-train the feature extractor f on a many-shot
classification task using the whole set of D. The meta-learner in MTL is called
scaling and shifting weights ΦSS , and in SIB is called synthetic information
bottleneck network φ(λ, ξ). Besides, there is a common meta-learner called base-
learner initializer θ, i.e., the same θ in Fig. 2, in both methods. In MAML, the
only base-learner is θ and there is no pre-training for its feature extractor f .

Given an episode T , we feed training images x(tr) and test images x(te) to
the feature extractor f � ΦSS in MTL (f in SIB and MAML), and obtain the
embedding e(tr) and e(te), respectively. Then in MTL, we use e(tr) with labels to
train base-learner Θ for M times to get {Θm}Mm=1 with Eq. (6). In SIB, we use
its multilayer perceptron (MLP) net to synthesize gradients conditional on e(te)

to indirectly update {Θm}Mm=1. During these updates, our hyperprior learner Ψα
derives the learning rates for all epochs. In episode test, we feed e(te) to {Θm}Mm=1

and get the combined prediction {zm}Mm=1 with Eq. (9). Finally, we compute
the test loss to meta-update [Ψα;Ψv;ΦSS ; θ] in MTL, [Ψα;Ψv;φ(λ, ξ); θ] in SIB,
and [f ; θ] in MAML. We call the resulting methods MTL+E3BM, SIB+E3BM,
and MAML+E3BM, respectively, and demonstrate their improved efficiency over
baseline models [13,25,70] in experiments.

5 Experiments

We evaluate our approach in terms of its overall performance and the effects
of its two components, i.e. ensembling epoch-wise models and meta-learning
hyperprior learners. In the following sections, we introduce the datasets and
implementation details, compare our best results to the state-of-the-art, and
conduct an ablation study.

5.1 Datasets and implementation details

Datasets. We conduct few-shot image classification experiments on three bench-
marks: miniImageNet [73], tieredImageNet [58] and FC100 [53]. miniImageNet
is the most widely used in related works [13, 24, 25, 25, 70, 71]. tieredImageNet
and FC100 are either with a larger scale or a more challenging setting with lower
image resolution, and have stricter training-test splits.

miniImageNet was proposed in [73] based on ImageNet [60]. There are 100
classes with 600 samples per class. Classes are divided into 64, 16, and 20 classes
respectively for sampling tasks for meta-training, meta-validation and meta-
test. tieredImageNet was proposed in [58]. It contains a larger subset of Ima-

geNet [60] with 608 classes (779, 165 images) grouped into 34 super-class nodes.
These nodes are partitioned into 20, 6, and 8 disjoint sets respectively for meta-
training, meta-validation and meta-test. Its super-class based training-test split
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results in a more challenging and realistic regime with test tasks that are less
similar to training tasks. FC100 is based on the CIFAR100 [33]. The few-shot

task splits were proposed in [53]. It contains 100 object classes and each class
has 600 samples of 32×32 color images per class. On these datasets, we consider
the (5-class, 1-way) and (5-class, 5-way) classification tasks. We use the same
task sampling strategy as in related works [1, 13,25].

Backbone architectures. In MAML+E3BM, we use a 4-layer convolution net-
work (4CONV) [1, 13]. In MTL+E3BM, we use a 25-layer residual network
(ResNet-25) [56, 69, 78]. Followed by convolution layers, we apply an average
pooling layer and a fully-connected layer. In SIB+E3BM, we use a 28-layer wide
residual network (WRN-28-10) as SIB [25].

The configuration of base-learners. In MTL [70] and SIB [25], the base-
learner is a single fully-connected layer. In MAML [13], the base-learner is the
4-layer convolution network. In MTL and MAML, the base-learner is randomly
initialized and updated during meta-learning. In SIB, the base-learner is initial-
ized with the averaged image features of each class. The number of base-learners
M in MTL+E3BM and SIB+E3BM are respectively 100 and 3, i.e., the original
numbers of training epochs in [25,70].

The configuration of hyperprior learners. In Fig. 3, we show two options for
hyperprior learners (i.e., Ψα and Ψv). Fig. 3(a) is the epoch-independent option,
where each epoch has two FC layers to produce α and v respectively. Fig. 3(b)
is the epoch-dependent option which uses an LSTM to generate α and v at
all epochs. In terms of the learning hyperprior learners, we have two settings:
inductive learning denoted as “Ind.”, and transductive learning as “Tra.”. “Ind.”
is the supervised learning in classical few-shot learning methods [13,37,64,70,73].
“Tra.” is semi-supervised learning, based on the assumption that all test images
of the episode are available. It has been applied to many recent works [24,25,45].

Ablation settings. We conduct a careful ablative study for two components,
i.e., “ensembling multiple base-learners” and “meta-learning hyperprior learn-
ers”. We show their effects indirectly by comparing our results to those of using
arbitrary constant or learned values of v and α. In terms of v, we have 5 abla-

tion options: (v1) “E3BM” is our method generating v from Ψv; (v2) “learnable”
is to set v to be update by meta gradient descent same as θ in [13]; (v3) “op-
timal” means using the values learned by option (a2) and freezing them during
the actual learning; (v4) “equal” is an simple baseline using equal weights; (v5)
“last-epoch” uses only the last-epoch base-learner, i.e., v is set to [0, 0, ..., 1]. In
the experiments of (v1)-(v5), we simply set α as in the following (a4) [13,25,70].
In terms of α, we have 4 ablation options: (a1) “E3BM” is our method gen-

erating α from Ψα; (a2) “learnable” is to set α to be update by meta gradient
descent same as θ in [13]; (a3) “optimal” means using the values learned by op-
tion (a2) and freezing them during the actual learning; (a4) “fixed” is a simple
baseline that uses manually chosen α following [13,25,70]. In the experiments of
(a1)-(a4), we simply set v as in (v5), same with the baseline method [70].
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Methods Backbone
miniImageNet tieredImageNet FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchNets [73] 4CONV 43.44 55.31 – – – –

ProtoNets [64] 4CONV 49.42 68.20 53.31 72.69 – –

MAML� [13] 4CONV 48.70 63.11 49.0 66.5 38.1 50.4

MAML++� [1] 4CONV 52.15 68.32 51.5 70.6 38.7 52.9

TADAM [53] ResNet-12 58.5 76.7 – – 40.1 56.1

MetaOptNet [37] ResNet-12 62.64 78.63 65.99 81.56 41.1 55.5

CAN [24] ResNet-12 63.85 79.44 69.89 84.23 – –

CTM [40] ResNet-18 64.12 80.51 68.41 84.28 – –

MTL [70] ResNet-12 61.2 75.5 – – 45.1 57.6

MTL� [70] ResNet-25 63.4 80.1 69.1 84.2 43.7 60.1

LEO [61] WRN-28-10 61.76 77.59 66.33 81.44 – –

Robust20-dist‡ [12] WRN-28-10 63.28 81.17 – – – –

MAML+E3BM 4CONV 53.2(↑4.5) 65.1(↑2.0) 52.1(↑3.1) 70.2(↑3.7) 39.9(↑1.8) 52.6(↑2.2)
(+time, +param) – (8.9, 2.2) (9.7, 2.2) (10.6, 2.2) (9.3, 2.2) (7.8, 2.2) (12.1, 2.2)

MTL+E3BM ResNet-25 64.3(↑0.9) 81.0(↑0.9) 70.0(↑0.9) 85.0(↑0.8) 45.0(↑1.3) 60.5(↑0.4)
(+time, +param) – (5.9, 0.7) (10.2, 0.7) (6.7, 0.7) (9.5, 0.7) (5.7, 0.7) (7.9, 0.7)

(a) Inductive Methods

EGNN [31] ResNet-12 64.02 77.20 65.45 82.52 – –

CAN+T [24] ResNet-12 67.19 80.64 73.21 84.93 – –

SIB�‡ [25] WRN-28-10 70.0 79.2 72.9 82.8 45.2 55.9

SIB+E3BM‡ WRN-28-10 71.4(↑1.4) 81.2(↑2.0) 75.6(↑2.7) 84.3(↑1.5) 46.0(↑0.8) 57.1(↑1.2)
(+time, +param) – (2.1, 0.04) (5.7, 0.04) (5.2, 0.04) (4.9, 0.04) (6.1, 0.04) (7.3, 0.04)

(b) Transductive Methods

�Our implementation on tieredImageNet and FC100. ‡Input image size: 80× 80× 3.

Table 1. The 5-class few-shot classification accuracies (%) on miniImageNet,
tieredImageNet, and FC100. “(+time, +param)” denote the additional computational
time (%) and parameter size (%), respectively, when plugging-in E3BM to baselines
(MAML, MTL and SIB). “–” means no reported results in original papers. The best
and second best results are highlighted.

5.2 Results and analyses

In Table 1, we compare our best results to the state-of-the-arts. In Table 2, we
present the results of using different kinds of hyperprior learner, i.e., regard-
ing two architectures (FC and LSTM) and two learning strategies (inductive
and transductive). In Fig. 4(a)(b), we show the validation results of our abla-
tive methods, and demonstrate the change during meta-training iterations. In
Fig. 4(c)(d), we plot the generated values of v and α during meta-training.

Comparing to the state-of-the-arts. Table 1 shows that the proposed E3BM
achieves the best few-shot classification performance in both 1-shot and 5-shot
settings, on three benchmarks. Please note that [12] reports the results of using
different backbones and input image sizes. We choose its results under the same
setting of ours, i.e., using WRN-28-10 networks and 80× 80× 3 images, for fair
comparison. In our approach, plugging-in E3BM to the state-of-the-art model
SIB achieves 1.6% of improvement on average, based on the identical network ar-
chitecture. This improvement is significantly larger as 2.9% when taking MAML
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No.
Setting miniImageNet tieredImageNet FC100

Method Hyperprior Learning 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

1 MTL [70] – Ind. 63.4 80.1 69.1 84.2 43.7 60.1

2 MTL+E3BM FC Ind. 64.3 80.9 69.8 84.6 44.8 60.5

3 MTL+E3BM FC Tra. 64.7 80.7 69.7 84.9 44.7 60.6

4 MTL+E3BM LSTM Ind. 64.3 81.0 70.0 85.0 45.0 60.4

5 MTL+E3BM LSTM Tra. 64.5 81.1 70.2 85.3 45.1 60.6

6 SIB [25] – Tra. 70.0 79.2 72.9 82.8 45.2 55.9

7 SIB+E3BM FC Tra. 71.3 81.0 75.2 83.8 45.8 56.3

8 SIB+E3BM LSTM Tra. 71.4 81.2 75.6 84.3 46.0 57.1

Table 2. The 5-class few-shot classification accuracies (%) of using different hyper-
prior learners, on the miniImageNet, tieredImageNet, and FC100. “Ind.” and “Tra.”
denote the inductive and transductive settings, respectively. The best and second
best results are highlighted.

as baseline. All these show to be more impressive if considering the tiny overheads
from pluging-in. For example, using E3BM adds only 0.04% learning parameters
to the original SIB model, and it gains only 5.2% average overhead regarding
the computational time. It is worth mentioning that the amount of learnable
parameters in SIB+E3BM is around 80% less than that of model in [12] which
ensembles 5 deep networks in parallel (and later learns a distillation network).

Hyperprior learners. In Table 2, we can see that using transductive learning
clearly outperforms inductive learning, e.g., No. 5 vs. No. 4. This is because the
“transduction” leverages additional data, i.e., the episode-test images (no labels),
during the base-training. In terms of the network architecture, we observe that
LSTM-based learners are slightly better than FC-based (e.g., No. 3 vs. No. 2).
LSTM is a sequential model and is indeed able to “observe” more patterns from
the adaptation behaviors of models at adjacent epochs.

Ablation study. Fig. 4(a) shows the comparisons among α related ablation
models. Our E3BM (orange) again performs the best, over the models of using
any arbitrary α (red or light blue), as well as over the model with α optimized
by the meta gradient descent (blue) [13]. Fig. 4(b) shows that our approach
E3BM works consistently better than the ablation models related to v. We should
emphasize that E3BM is clearly more efficient than the model trained with meta-
learned v (blue) through meta gradient descent [13]. This is because E3BM
hyperprior learners generate empirical weights conditional on task-specific data.
The LSTM-based learners can leverage even more task-specific information, i.e.,
the hidden states from previous epochs, to improve the efficiency.

The values of α and v learned by E3BM. Fig. 4(c)(d) shows the values
of α and v during the meta-training iterations in our approach. Fig. 4(c) show
the base-learners working at later training epochs (e.g., BL-100) tend to get
smaller values of α. This is actually similar to the common manual schedule,
i.e. monotonically decreasing learning rates, of conventional large-scale network
training [21]. The difference is that in our approach, this is “scheduled” in a
total automated way by hyperprior learners. Another observation is that the
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Fig. 4. (a)(b): The meta-validation accuracies of ablation models. The legends are
explained in (a1)-(a4) and (v1)-(v5) in Sec. 5.1 Ablation settings. All curves are
smoothed with a rate of 0.9 for a better visualization. (c)(d): The values of α and v
generated by Ψα and Ψv, respectively. The setting is using MTL+E3BM, ResNet-25,
on miniImageNet, 1-shot.

highest learning rate is applied to BL-1. This actually encourages BL-1 to make
an influence as significant as possible. It is very helpful to reduce meta gradient
diminishing when unrolling and back-propagating gradients through many base-
learning epochs (e.g., 100 epochs in MTL). Fig. 4(d) shows that BL-1 working
at the initial epoch has the lowest values of v. In other words, BL-1 is almost
disabled in the prediction of episode test. Intriguingly, BL-25 instead of BL-100
gains the highest v values. Our explanation is that during the base-learning,
base-learners at latter epochs get more overfitted to the few training samples.
Their functionality is thus suppressed. Note that our empirical results revealed
that including the overfitted base-learners slightly improves the generalization
capability of the approach.

6 Conclusions

We propose a novel E3BM approach that tackles the few-shot problem with an
ensemble of epoch-wise base-learners that are trained and combined with task-
specific hyperparameters. In specific, E3BM meta-learns the hyperprior learners
to generate such hyperparameters conditional on the images as well as the train-
ing states for each episode. Its resulting model allows to make use of multiple
base-learners for more robust predictions. It does not change the basic train-
ing paradigm of episodic few-shot learning, and is thus generic and easy to
plug-and-play with existing methods. By applying E3BM to multiple baseline
methods, e.g., MAML, MTL and SIB, we achieved top performance on three
challenging few-shot image classification benchmarks, with little computation or
parametrization overhead.
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Supplementary Materials

These supplementary materials include E3BM algorithms, results with confi-
dence intervals, the supplementary plots to Fig. 4, backbone architectures, imple-
mentation details, ablation results for MAML, the inference time and the number
of parameters, and the execution steps of our source code with PyTorch.

A E3BM algorithms

Algorithm 1 summarizes the meta-training (line 1-10) and meta-testing (line
11-16) procedures in our E3BM approach. For clarity, the base-learning steps
within a single episode are moved to Algorithm 2.

Algorithm 1: An Ensemble of Epoch-wise Empirical Bayes Models
(E3BM)

Input: Meta-train episode distribution ptr(T ), Meta-test episode distribution
pte(T ), and meta-train stepsizes β1 and β2.

Output: The average accuracy of meta-test.
% Meta-train phase:

1 Randomly initialize θ;
2 for all meta iterations do
3 Sample a batch of meta-train episodes {Ti} ∈ ptr(T );
4 for Ti in {Ti} do
5 Train the sequence of base-learners on Ti by Algorithm 2;
6 end

7 Evaluate L(te) with Eq. (13) ;
8 Optimize Ψα, and Ψv with Eq. (14) using β1 and β2;
9 Optimize other meta components, e.g., θ.

10 end
% Meta-test phase:

11 Sample meta-test episodes {Ti} ∈ pte(T );
12 for Ti in {Ti} do
13 Train the sequence of base-learners on Ti and obtain the prediction scores

ŷ(te) by Algorithm 2;
14 Compute episode test accuracy Acci;

15 end
16 Return the average accuracy of {Acci}.

B Results with confidence intervals

In Table S1, we supplement the few-shot classification accuracy (%) on miniImageNet,
tieredImageNet, and FC100 (5-class) with confidence intervals.
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Algorithm 2: Learning the ensemble of base-learners in one episode

Input: An episode T , hyperprior learners Ψα and Ψv.
Output: Prediction ŷ(te), and episode test loss L(te).

1 Initialize Θ0 = θ;
2 for m in {1, ...,M} do

3 Evaluate L(tr)
m with Eq. (7) and compute ∇ΘL(tr)

m ;
4 Get αm from Ψα and get vm from Ψv;
5 Get Θm using αm with Eq. (6);
6 Compute zm with Eq. (8);
7 if m = 1 then

8 Initialize ŷ
(te)
1 = v1z1;

9 else

10 Compute ŷ
(te)
m using vm with Eq. (9);

11 end

12 end

13 Evaluate L(te) with Eq. (13).

Methods Backbone
miniImageNet tieredImageNet FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML+E3BM 4CONV 53.2 ± 1.8 65.1 ± 0.9 52.1 ± 1.8 70.2 ± 0.9 39.9 ± 1.8 52.6 ± 0.9

MTL+E3BM ResNet-12 63.8 ± 0.4 80.1 ± 0.3 71.2 ± 0.4 85.3 ± 0.3 43.2 ± 0.3 60.2 ± 0.3

MTL+E3BM ResNet-25 64.3 ± 0.4 81.0 ± 0.3 70.0 ± 0.4 85.0 ± 0.3 45.0 ± 0.4 60.5 ± 0.3

SIB+E3BM WRN-28-10 71.4 ± 0.5 81.2 ± 0.4 75.6 ± 0.6 84.3 ± 0.4 46.0 ± 0.6 57.1 ± 0.4

Table S1. Supplementary to Table 1. Few-shot classification accuracy (%) on
miniImageNet, tieredImageNet, and FC100 (5-class).

C Supplementary figures

Supplementary to Fig. 4(a)(b). In Fig. S1, we supplement the meta-validation
accuracies for the 1-shot and 5-shot cases on miniImageNet, tieredImageNet, and
FC100 (Note that Fig. 4 already has the miniImageNet 1-shot results).

Supplementary to Fig. 4(c)(d). On the miniImageNet, we supplement the
plots of α and v in the 5-shot case in Fig. S2(a)(b). On the tieredImageNet, we
show the plots of α and v in Fig. S2(c)(d) and (e)(f), respectively for 1-shot
and 5-shot cases. On the FC100, we show the plots of α and v in Fig. S2(g)(h)
and (i)(j), respectively for 1-shot and 5-shot cases. Each figure demonstrates the
values of α (or v) generated by the model “MTL+E3BM” as in Table 1.

D Backbone architectures

4CONV consists of 4 layers with 3× 3 convolutions and 32 filters, followed by
batch normalization (BN), a ReLU nonlinearity, and 2× 2 max-pooling.
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ResNet-12 has 3 residual blocks. Each block has 4 convolution layers with
3 × 3 kernels. The number of filters starts from 160 and is doubled every next
block. After a global average pooling layer, it gets a 640-dim embedding. This
architecture follows [37].

ResNet-25 has 3 residual blocks after an initial convolution layer. Each block
has 8 convolution layers with 3×3 kernels. The number of filters starts from 160
and is doubled every next block. After a global average pooling layer, it gets a
640-dim embedding. This architecture follows [78].

WRN-28-10 has its depth and width set to 28 and 10, respectively. After a
global average pooling in the last layer of the backbone, it gets a 640-dimensional
embedding. For this backbone, we resize the input image to 80×80×3 for a fair
comparison with related methods [25, 70]. Other details are the same as those
with ResNet-25 [61,78].

E Implementation details

MTL+E3BM. The meta learning rates for the scaling and shifting weights
ΦSS and the base-learner initializer θ are set to 1 × 10−4 uniformly. The base
learning rates {α′m}Mm=1 (Fig. 3) are initialized as 1×10−2 [70,78]. We meta-train
MTL+E3BM for 10, 000 iterations and use the model, which has the highest
meta-validation accuracy, for meta-test.

SIB+E3BM. The meta learning rates for both SIB network φ(λ, ξ) and base-
learner initializer θ are set to 1 × 10−3 uniformly. The base learning rates
{α′m}Mm=1 (Fig. 3) are initialized as 1 × 10−3 [25]. We meta-train SIB+E3BM
for 50, 000 iterations and use the model, which has the highest meta-validation
accuracy, for meta-test.

MAML+E3BM. MAML only contains a model initializer θ, and we set its
meta-learning rate as 1 × 10−3 [13]. The base learning rates {α′m}Mm=1 (Fig. 3)
are initialized as 1× 10−3. We meta-train MAML+E3BM for 60, 000 iterations
and use the model, which has the highest meta-validation accuracy, for meta-
test.

Shared hyperparameters. The meta learning rates for Ψα and Ψv are set to
1× 10−6 uniformly. For initializing {v′m}Mm=1 (Fig. 3), we have two options. One
is each v′m is initialized as 1/(number of base-learners), and the other one is that
{v′m}M−1m=1 are initialized as 0 and v′M as 1. In Eq. (12) in Sec. 4.3, λ1 and λ2
are set to 1× 10−4. For the rest of the hyperparameters, we follow the original
settings of baselines [13,25,70].

Constraints for v and α. In the constraint mode, we applied the constraints
on v and α to force them to be positive and smaller than 1. We did not have
any constraint for ∆v or ∆α. Please note that the constraints are not applied in
the default setting.

Dataloader For MAML, we use the same dataloader as [13]. For MTL, we
follow [78,81,82]. For SIB, we follow [25].
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F Ablation results for MAML

In Table S2, we supplement the ablation results for “MAML+E3BM” on miniImageNet,
tieredImageNet, and FC100 (5-class).

No.
Setting miniImageNet tieredImageNet FC100

Method Hyperprior Learning 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

1 MAML [13] – Ind. 48.70 63.11 49.0 66.5 38.1 50.4

2 5x MAML – Ind. 52.1 65.1 51.1 68.8 40.1 50.8

3 MAML+E3BM FC Ind. 52.1 65.1 51.1 68.8 39.5 51.7

4 MAML+E3BM FC Tra. 52.8 65.3 52.2 69.5 40.4 51.8

5 MAML+E3BM LSTM Ind. 53.2 65.0 52.1 70.2 39.9 52.6

6 MAML+E3BM LSTM Tra. 53.8 65.2 52.7 70.5 40.4 52.3

Table S2. Supplementary to Table 2. Results (%) for different hyperprior learners
on miniImageNet, tieredImageNet, and FC100 (5-class). “Ind.” and “Tra.” denote
inductive and transductive settings, respectively.

G The inference time and the number of parameters

In Table S3, we supplement the the inference time and the number of parameters
of baselines (100 epochs, miniImageNet, 5-way 1-shot, on NVIDIA V100 GPU)

No. Method Backbone # Param Time (min)

1 MTL ResNet-25 4,321k 73.3

2 MTL+E3BM (ours) ResNet-25 4,351k 77.6

3 SIB WRN-28-10 36,475k 325.0

4 SIB+E3BM (ours) WRN-28-10 36,490k 331.8

5 ProtoNets ResNet-12 12,424k 35.2

6 MatchNets ResNet-12 12,424k 37.3

7 ProtoNets ResNet-25 36,579k 70.5

7 ProtoNets WRN-28-10 36,482k 350.1

Table S3. Supplementary to Table 1. The inference time and the number of parameters
of baselines (100 epochs, miniImageNet, 5-way 1-shot, on NVIDIA V100 GPU).

H Executing the source code with PyTorch

We provide our PyTorch code at https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/e3bm.
To run this repository, we kindly advise you to install python 3.6 and PyTorch

https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/e3bm
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1.2.0 with Anaconda. You may download Anaconda and read the installation
instruction on the official website (https://www.anaconda.com/download/).
Create a new environment and install PyTorch and torchvision on it:

1 conda create --name e3bm -pytorch python =3.6

2 conda activate e3bm -pytorch

3 conda install pytorch =1.2.0

4 conda install torchvision -c pytorch

Install other requirements:

1 pip install -r requirements.txt

Run meta-training with default settings (data and pre-trained model will be
downloaded automatically):

1 python main.py -backbone resnet12 -shot 1 -way 5 -mode

meta_train -dataset miniimagenet

2 python main.py -backbone resnet12 -shot 5 -way 5 -mode

meta_train -dataset miniimagenet

3 python main.py -backbone resnet12 -shot 1 -way 5 -mode

meta_train -dataset tieredimagenet

4 python main.py -backbone resnet12 -shot 5 -way 5 -mode

meta_train -dataset tieredimagenet

Run pre-training with default settings:

1 python main.py -backbone resnet12 -mode pre_train -dataset

miniimagenet

2 python main.py -backbone resnet12 -mode pre_train -dataset

tieredimagenet

https://www.anaconda.com/download/
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Fig. S1. Supplementary to Fig. 4(a)(b). The meta-validation accuracies of ablation
models. Each figure demonstrates the results using the same model “MTL+E3BM” as
in Table 1. All curves are smoothed with a rate of 0.9 for a better visualization.
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Fig. S2. Supplementary to Fig. 4(c)(d). The values of α and v generated by Ψα and Ψv,
respectively. Each figure demonstrates the results using the same model “MTL+E3BM”
as in Table 1.


