
LCC: Learning to Customize and Combine Neural Networks
for Few-Shot Learning

Yaoyao Liu1,2∗ Qianru Sun2,3∗ An-An Liu1 Yuting Su1

Bernt Schiele3 Tat-Seng Chua2

1Tianjin University† 2National University of Singapore
3Max Planck Institute for Informatics, Saarland Informatics Campus

{liuyaoyao, liuanan, ytsu}@tju.edu.cn
{qsun, schiele}@mpi-inf.mpg.de dcscts@nus.edu.sg

Abstract

Meta-learning has been shown to be an effective strat-
egy for few-shot learning. The key idea is to leverage a
large number of similar few-shot tasks in order to meta-
learn how to best initiate a (single) base-learner for novel
few-shot tasks. While meta-learning how to initialize a
base-learner has shown promising results, it is well-known
that hyperparameter settings such as the learning rate and
the weighting of the regularization term are important to
achieve best performance. We thus propose to also meta-
learn these hyperparameters and in fact learn a time- and
layer-varying scheme for learning a base-learner on novel
tasks. Additionally, we propose to learn not only a sin-
gle base-learner but an ensemble of several base-learners
to obtain more robust results. While ensembles of learn-
ers have shown to improve performance in various settings,
this is challenging for few-shot learning tasks due to the
limited number of training samples. Therefore, our ap-
proach also aims to meta-learn how to effectively combine
several base-learners. We conduct extensive experiments
and report top performance for five-class few-shot recogni-
tion tasks on two challenging benchmarks: miniImageNet
and Fewshot-CIFAR100 (FC100)1.

1. Introduction
Few-shot learning aims to learn new concepts from a

handful of training examples, e.g. from 1 or 5 training im-
ages [30, 11, 54]. This ability is well-handled by humans,
while in contrast, it remains challenging for machine learn-
ing models that typically require a significant amount of
∗Equal contribution.
†Yaoyao Liu did this work during his internship at NUS.
1Code and supplementary materials will be released soon.

20k 40k 60k 80k
iterations

0.4

0.5

0.6

ac
cu

ra
cy

20k 40k 60k 80k
iterations

ours
baseline

(a) training (b) validation
Figure 1. An example of 1-shot result on miniImageNet [59]. X-
axis is meta iteration. A point on the curve corresponds to one
task and the curves are smoothed with a rate of 0.8. Our approach
with multiple base-learners achieves clearly better generalization
performance, compared to the baseline model MAML [11].

training data for good performance [26]. For instance on
the CIFAR-100 dataset, a classification model trained in the
fully supervised mode achieves 76% accuracy for the 100-
class setting [9], while the best-performing 1-shot model
achieves only 45% in average for the much simpler 5-class
setting [54]. On the other hand, in many real-world applica-
tions we are lacking significant amounts of training data, as
e.g. in the medical domain. It is thus desirable to improve
machine learning models to handle few-shot settings.

The nature of few-shot learning with very scarce training
data makes is difficult to train powerful machine learning
models for new concepts. Meta-learning methods aim to
tackle this problem by transferring experience from similar
few-shot learning tasks [7]. There are different meta strate-
gies, among which the optimization-based methods are par-
ticularly promising for today’s neural networks [11, 12, 17,
13, 29, 63, 54, 2]. These methods follow a unified train-
ing process that contains two loops. The inner-loop learns a
base-learner for an individual task, and the outer-loop then

1

ar
X

iv
:1

90
4.

08
47

9v
1

 [
cs

.C
V

]
 1

7
A

pr
 2

01
9

uses the validation performance of the learned base-learner
to optimize the meta-learner. In previous work [11, 12, 2],
the task of the meta-learner is to effectively initialize the
base-learner.

In this work we are addressing two shortcomings of pre-
vious work. First, the learning process of a base-learner for
few-shot tasks is quite unstable [2], and often results in low
performance. An intuitive solution is to train an ensemble
of models and use the combined prediction which should
be more robust [6, 41, 24]. However, it is not obvious how
to obtain and combine an ensemble of base-learners given
the fact that only few training samples are available. Rather
than learning multiple independent base-learners, we pro-
pose to use the sequence of base-learners while training a
single base-learner as the ensemble and also learn how to
weigh them for best performance automatically. Second,
it is well known that the value of various hyperparame-
ters are critical for best performance which is particularly
important in few-shot learning settings. We thus propose
to also meta-learn two important hyperparameters, namely
learning rate and regularization weight. We call the re-
sulting novel meta-learning approach LCC. LCC explic-
itly Learns to Customize multiple base-learners as well as
learns to Combine their prediction results. Our “multiple
base-learners” are different models since each one of them
results from a specific training epoch and is trained with a
specific set of hyperparameter values. LCC sets these hy-
perparameters to be fine-grained, e.g. layer-wise learning
rates, in order to enable more efficient model exploration.
During test, LCC combines multiple base-learners’ predic-
tions using soft weights in order to produce more robust re-
sults. Overall, the used hyperparameters and soft weights
are also meta-learning targets of LCC. For meta-training
we leverage meta gradient descent methods that have been
shown effective [11, 54, 2, 12, 45].

Importantly, fast model adaptation is an objective of
meta-learning. In the adaptation process, the most active
adapting behaviors actually happen in the early epochs, and
then converging to and even overfitting to training data in
later epochs. Related works use a single base-learner (usu-
ally from the last epoch), so their meta-learners learn only
partial adaptation experience [11, 54, 12]. By contrast, our
LCC leverages an ensemble modeling strategy that adapts
base-learners at different training epochs with optimized
hyperparameters. Its meta-learner thus obtains the opti-
mized combinational experience. Figure 1 presents that our
approach improves the generalization ability substantially
over the baseline approach that uses a single base-learner
with standard hyperparameters [11].

Our overall contribution is thus three-fold. (1) We pro-
pose the novel meta-learning approach LCC that learns to
combine an ensemble of base-learners for few-shot learn-
ing. LCC both learns how to combine an ensemble of base-

learners and learns how to learn these models automatically
with fine-grained hyperparameters, e.g. layerwise learn-
ing rates and regularization weights. (2) Extensive exper-
iments on two challenging few-shot benchmarks, miniIma-
geNet [59] and Fewshot-CIFAR100 (FC100) [40]. (3) In-
depth analysis of the learning process of LCC. We report
several interesting observations for automatic adaption. For
example, the learning rate of the later-epoch base-learner
is often slightly higher, which is opposite to the common
schedule, i.e. monotonically decreasing the learning rate,
of large-scale network training [18, 55].

2. Related works

Few-shot learning & meta-learning. Research literature
on few-shot learning paradigms exhibits a high diversity
from using data augmentation techniques [60, 62] over shar-
ing feature representation [3, 61] to meta-learning [16, 58].
In this paper, we focus on the meta-learning paradigm that
leverages few-shot learning experiences from similar tasks,
based on the episodic formulation (see Section 3.1). Re-
lated work can be roughly divided into three categories:
(1) metric learning methods [59, 49, 57] aim to learn
a similarity space, in which the learning should be effi-
cient for few-shot examples; (2) memory network meth-
ods [37, 46, 40, 35] aim to learn training “experience”
from seen tasks and then aim to generalize to the learn-
ing of unseen ones; and (3) gradient descent based meth-
ods [11, 12, 2, 43, 29, 17, 63, 54] usually employing a
meta-learner that learns to fast adapt a NN base-learner to a
new task within a few iterations. State-of-the-art models are
MAML [11] and its recent improved version MAML++ [2].
Their meta-learners learn to effectively initialize the param-
eters of a NN base-learner for a new task. Our approach is
closely related to MAML related methods [11, 2]. An im-
portant difference is that we learn how to customize and
how to combine an ensemble of base-learners for robust
model prediction, while MAML [11] and MAML++ [2] use
a single base-learner.
Hyperparameter optimization. Building a model for a
new task is a process of exploration-exploitation. Explor-
ing suitable architectures and hyperparameters are impor-
tant before training. Traditional methods are model-free,
e.g. grid search. Bergstra and Bengio [5] advocated us-
ing random search over grid search. Li et al. [31] im-
proved random search by adaptively allocating resources
to promising configurations. Jaderberg et al. [23] sched-
uled a population of networks in parallel, and periodically
replace the weights of under-performing networks by bet-
ter ones. These methods require multiple full training tri-
als and are thus costly. Model-based hyperparameter opti-
mization methods are adaptive but sophisticated, e.g. us-
ing random forests [20], Gaussian processes [50] and in-
put warped Gaussian processes [52] or scalable Bayesian

optimization [51]. In our approach, we meta-learn hy-
perparameters by a simple and elegant gradient descent
method, without additional manual labor. Related meth-
ods using gradient descent mostly work for single network
training [4, 10, 33, 32, 13, 34]. While, we aim to learn a
sequence of hyperparameters for multiple base-learners.
Ensemble modeling. It is a strategy that aims to improve
machine learning performance using multiple algorithms,
and has proved to effectively reduce problems related to
overfitting [27, 53]. Mitchell et al. [36] provided a theoreti-
cal explanation for it. Boosting is one classical way to build
an ensemble by training new models with emphasizing hard
samples, e.g. AdaBoost [14] and Gradient Tree Boost-
ing [15]. Stacking combines multiple models by learning
a combiner like a logistic regression model. It applies to
both supervised learning tasks [6, 41, 24] and unsupervised
learning [48]. Bootstrap aggregating (bagging) builds an
ensemble using models generated in parallel to reduce the
variance [6], e.g. Random Forests [19]. In few-shot set-
tings, it is hard to train plenty of different models in parallel.
Our approach makes use of the ensemble of training epochs
to obtain different models. Ensembling models in a tempo-
ral way [28] and utilizing features extracted by an ensemble
of attribute models [56] are also related works. Comparing
to them, our difference lies in that our multiple models are
customized with optimized hyperparameters and combined
with learned weights, automatically.

3. Preliminary
This section first introduces the unified episodic formu-

lation of few-shot learning, following related works [59, 43,
11, 40, 54, 45]. Then, we briefly introduce the meta gradient
decent of meta-learner based on a single base model, which
is commonly used in related works [11, 12, 54, 2].

3.1. Episodic formulation

The episodic formulation was proposed for few-shot
learning first in [59]. The problem definition of few-shot
learning is different from traditional image classification,
in three aspects: (1) the main phases are not train and test
but meta-train and meta-test, each of which includes train-
ing and testing; (2) the samples in meta-train and meta-test
are not datapoints but episodes, i.e. few-shot classifica-
tion tasks; and (3) the objective is not classifying unseen
datapoints but to fast adapt the meta-learned experience or
knowledge to the learning of a new few-shot classification
task.

Given a dataset D for meta-train, we first sample few-
shot episodes (tasks) {T } from a task distribution p(T)
such that each episode T contains few samples of few
classes, e.g. 5 classes and 1 shot per class. Each episode
T includes a training split T (tr) to optimize a specific base-
learning network, and a test split T (te) to compute a gen-

eralization loss used to optimize a global meta-learner. For
meta-test, given an unseen dataset Dun, we sample a test
task Tun to have the same-size training/test splits. “Unseen”
means there is no overlap of image classes between meta-
test and meta-train tasks. We first initiate a new model with
meta-learned network parameters (ours with additional hy-
perparameters), then train this model on the training split
T (tr)
un . We finally evaluate the performance on the test split
T (te)
un . If we have multiple unseen tasks for meta-test, we

report average accuracy as the final result.

3.2. Meta gradient descent

Meta gradient descent is a classical way of outer-loop
optimization [58, 47, 39]. MAML [11] first applied this
to supervised meta-learning and reinforcement learning. It
optimizes meta parameters θ (meta-learner) that are used to
initialize a specific model Θ (base-learner) for fast adaption
to a new task [11]. It trains a single base-learner for predic-
tion in each episode.

Given an episode T = {T (tr), T (te)}, we initialize the
base-learner parameters Θ as Θ0 ← θ, then adapt it by us-
ing gradient descent using the loss on the training datapoints
T (tr),

Θm+1 ← Θm − α∇ΘmLλ(T (tr),Θm), (1)

where Lλ is the penalty with a fixed hyperparameter λ, α is
a fixed learning rate and m the epoch number. Each base-
training contains M epochs. After M epochs, a validation
loss of T (te) is computed based on ΘM . The corresponding
gradient on θ is called meta gradient, and it unrolls through
the entire base adaptation procedure from ΘM to Θ0 (i.e.
the θ itself). The update of θ is thus to apply a meta gradient
descent computation as follows,

θ =: θ − β∇θLλ(T (te),ΘM). (2)

where β is the meta-learning rate. This meta gradient up-
date involves a gradient through a gradient. It requires an
additional backward pass through the base-learner to com-
pute Hessian-vector products [11], and this is supported by
standard libraries such as TensorFlow [1]. In the following,
we show how to leverage meta gradient descent within our
approach.

4. Learning to Customize and Combine (LCC)
As shown in Figure 2, our LCC both learns a sequence of

base-learners and learns to combine their prediction scores
during test for best performance. Hyperparameters are
learned by meta gradients automatically.

4.1. Initiate the sequence of base-learners

We use the sequence of base-learners obtained from
training a single base-learner as the ensemble. We thus

Back-propagation (meta gradients) (meta lr, meta ...)

(a) a meta customization step

...

...
Learning the sequence of base-learners Prediction & Validation loss computing

Meta gradient descent
Figure 2. The overall computing flow of our LCC, on one training task. LCC learns to combine the sequence of base-learners, with network
weights denoted as Θ1∼M , while training a single base-learning network as the ensemble. For prediction, it uses the weighted sum of the
scores predicted by those base-learners. Finally, it uses the validation loss L(te) for meta gradient back-propagation, in order to optimize
the key hyperparameters and combination weights, namely α, λ and v. Note that initialization parameters θ are also optimized.

can formulate the initiation of these base-learners in a se-
quential manner. Our “initiation” here includes the initial-
ization of neural network parameters, i.e., weights and bias
(the initialization of the 1-st base-learner is the same as for
MAML [11]), as well as the configuration of specific hyper-
parameters, for the sequence of base-learners.

Given an episode T = {T (tr), T (te)}, let Θm corre-
sponds to the parameters of the base-learner working at
epoch m (w.r.t. the m-th base-learner or BL-m), with
m ∈ {1, ...,M}. First, we initiate BL-1 with the initial-
ization parameters θ (network weights and bias), as well as
with specific hyperparameters, i.e. learning rates αm and
regularization weights λm. We then adapt BL-1 using gra-
dient descent on the training split T (tr), and its updated
weights and bias are then used to initialize the parameters
of BL-2. We formulate the general process as follows,

Θ0 ← θ, (3)

Θm ← Θm−1 − αm∇ΘL(tr)
m , (4)

where αm denotes the learning rate specified for BL-m, and
L(tr)
m is the training loss. Note that Θ0 is introduced to

make the notation consistent. If we use F (x; Θm) to ini-
tialize function BL-m mapping the inputs to the prediction
scores, the training loss of T (tr) =

{
x

(tr)
j , y

(tr)
j

}N1

j=1
can be

unfolded as,

L(tr)
m =

1

N1

N1∑
j=1

Lce
(
F (x

(tr)
j ,Θm−1), y

(tr)
j

)
+λm ‖Θm−1‖22 ,

(5)

where Lce is the softmax cross entropy loss, and ‖Θm‖2 is
the regularization of network weights and λm is the regular-
ization weight specified for BL-m. The meta optimization
on hyperparameters αm and λm is given in Section 4.2.

4.2. Learn to customize base-learners

As introduced in Section 4.1, the specific learning rate
αm and regularization weight λm are used to configure the
m-th base-learner. It is well known that fine-grained hyper-
parameters, e.g. layerwise learning rates, are more efficient,
but exponentially expensive to set by hand [21, 5]. Our
LCC does not have this problem and can learn fine-grained
hyperparameters without additional labour. Therefore, we
use layerwise learning rates and regularization weights as
αm = {αm,k}Kk=1 and λm = {λm,k}Kk=1, where K is the
layer number. When plugging αm and λm into Eq. 4, we
get all base-learners with fine-grained customization.

Our LCC automatically optimizes αm and λm by meta
gradient descent. First, it computes the validation loss on
the test split T (te) =

{
x

(te)
j , y

(te)
j

}N2

j=1
as,

L(te) =
1

N2

N2∑
j=1

Lce
(
ŷ

(te)
j , y

(te)
j

)
, (6)

which is based on the sequence of base-learners. ŷ denotes
the combination of their predictions, and its detailed com-
putation is given in Section 4.3.

Then, it uses L(te) to compute meta gradients of α or
λ, which unrolls the entire adaptation process on the se-
quence of base-learners back to the initiation step. Thus,
the sequence of involved hyperparameters α = {αm}Mm=1

or λ = {λm}Mm=1 can be updated as,

α =: α− β1∇αL(te), (7)

λ =: λ− β2∇λL(te), (8)

where β1 and β2 are meta-learning rates determining the
update stepsize of hyperparameter values.

The meta updates in Eq. 7 and Eq. 8 involve the
backward pass through BL-M to BL-1. Derivatives are
back-propagated through the unfolded inner loop (of every
base-learner) which contains all convolutional and fully-
connected layers. The corresponding layerwise learning
rates and regularization weights thus all get updated.

4.3. Learn to combine base-learners

As introduced in Sections 4.1 and 4.2, our LCC opti-
mizes the parameters as well as hyperparameters for the se-
quence of base-learners. For prediction, it uses the weighted
sum of the sequence of prediction scores (from all base-
learners). It optimizes the combination weights by meta
gradient descent.

First, we formulate the prediction scores z of a single
base-learner as:

z = F (x; Θ). (9)

For multiple base-learners, we define the combination
weights as v = {vm}Mm=1, and thus compute the combi-
nation as follows,

z =

M∑
m=1

vmF (x; Θm). (10)

Similar to the meta updates on α and λ, we update v as,

v =: v − β3∇vL(te), (11)

where β3 is the stepsize of this update. L(te) is the valida-
tion loss as follows,

L(te) =
1

N2

N2∑
j=1

Lce

(M∑
m=1

vmF
(
x

(te)
j ; Θm

)
, y

(te)
j

)
, (12)

which uses the weighted sum of all model predictions, and
is also the expanded version of Eq. 6.

4.4. Overall optimization and algorithm

When including the initialization parameters θ [11] (for
the initialization of 1st base-learner), we have the overall
formulation of meta-parameterization as:

[θ;α;λ;v] =: [θ;α;λ;v]− β �∇Lmeta, (13)

where β = {βc}4c=1 and β4 is the stepsize for updating
θ. For the computation of Lmeta, we apply the meta-batch
strategy in the iteration of episode training, following [11].
At each iteration, we sample a batch of P episodes {Ti}Pi=1

and then compute the average validation loss as,

Lmeta =
1

P

P∑
i=1

L
(
T (te)
i ;α,λ,v

)
. (14)

Algorithm 1 summarizes the meta-train (line 2-10) and
meta-test (line 12-17) procedures of our LCC approach. For
completeness, the base-learning updates in a single episode
are given in Algorithm 2.

Algorithm 1: Learn to customize and combine (LCC)
Input: Meta-train episode distribution ptr(T),

Meta-test episode distribution pte(T), and
meta-train stepsizes β.

Output: The average accuracy of meta-test.
1 % Meta-train phase:
2 Randomly initialize θ;
3 for all meta iterations do
4 Sample a batch of meta-train episodes

{Ti} ∈ ptr(T);
5 for Ti in {Ti} do
6 Train the sequence of base-learners on Ti by

Algorithm 2;
7 end
8 Evaluate Lmeta with Eq. 14 ;
9 Optimize θ, α, λ and v with Eq. 13 using β.

10 end
11 % Meta-test phase:
12 Sample meta-test episodes {Ti} ∈ pte(T);
13 for Ti in {Ti} do
14 Train the sequence of base-learners on Ti and

obtain the prediction scores zi by Algorithm 2;
15 Compute episode test accuracy Acci;
16 end
17 Return the average accuracy of {Acci}.

Algorithm 2: Update the sequence of base-learners
Input: An episode T , initialization parameters θ,

learning rates α, regularization weights λ,
combination weights v.

Output: Prediction scores z, and episode test loss
L(te).

1 Initialize Θ0 = θ;
2 for m in {1, ...,M} do
3 Evaluate L(tr)

m using λm with Eq. 5;
4 Get Θm using αm with Eq. 4;
5 end
6 Compute z using v with Eq. 10;
7 Evaluate L(te) with Eq. 12.

5. Experiments

We evaluate and analyze the proposed LCC approach in
terms of its overall performance and the effects from its two
components, i.e. using multiple base-learners and meta-
learning hyperparameters. We first describe the datasets and
detailed settings, then compare the results to state-of-the-art
methods and conduct an ablation study.

5.1. Datasets and implementation details

We conduct few-shot learning experiments on two
benchmarks: miniImageNet [59] and Fewshot-CIFAR100
(FC100) [40]. The former one is widely used in related
works [11, 43, 17, 13, 38, 54], and the later one is more chal-
lenging due to lower image resolution and harder training-
test splits [40, 54].
miniImageNet was proposed by Vinyals et al. [59] for eval-
uation of few-shot learning. It is complex because of using
ImageNet images, but requires fewer resources and infras-
tructure than running models on full ImageNet [44]. There
are 100 classes with 600 samples of 84×84 color images per
class. Classes are divided into 64, 16, and 20 classes respec-
tively for sampling tasks for meta-training, meta-validation
and meta-test, following related works [11, 43, 17, 13, 38].
Fewshot-CIFAR100 (FC100) is based on the popular ob-
ject classification dataset CIFAR100 [25]. The splits were
proposed by [40], see details in the supplementary. It of-
fers a more challenging scenario with lower image resolu-
tion and more challenging meta-train/meta-test splits (sep-
arated according to the super-classes of objects) than mini-
ImageNet. It contains 100 object classes and each class has
600 samples of 32 × 32 color images per class. The 100
classes belong to 20 super-classes. Meta-train data are from
60 classes belonging to 12 super-classes. Meta-validation
and meta-test data are from the other two 20 classes belong-
ing to 4 super-classes, respectively. These splits according
to super-classes minimize the information overlap between
meta-train and meta-test (meta-validation) tasks.

The following settings are shared for both datasets. We
use the same task sampling used in related works [11, 43,
12, 2]. Specifically, we consider the 5-class classification
and sample 5-class, 1-shot (5-shot or 10-shot) episodes to
contain 1 (5 or 10) samples as episode train data, and 15
(a uniform number) samples as episode test data. In total,
we sample 240k tasks for meta-training, and respectively
sample 600 random tasks for meta-validation and meta-test.
The base architecture is 4CONV, which is commonly
used in related works [43, 11, 49, 57, 17, 2]. 4CONV con-
sists of 4 layers with 3 × 3 convolutions and 32 filters, fol-
lowed by batch normalization (BN) [22], a ReLU nonlinear-
ity, a 2× 2 max-pooling layer, and a fully-connected layer.
The configuration of meta-learners. The network initial-
ization parameters θ have the same architecture as the base-
learner, except that the BN, non-linear and max-pooling
layer are removed. The architectures of α and λ depend
on both the number and architecture of the base-learner. In
our default setting, 5 base-learners with 4CONV architec-
ture are learned in the ensemble, so α and λ consist of 50
(for weights and biases) and 25 (only for weights) different
variables, respectively. The architecture of the combination
weights v is related to the number of base-learners in the

ensemble, so it has 5 variables.
The initialization of meta-learners. θ is initialized ran-
domly, which is the same as MAML [11]. All weights of α
and λ are initialized with 0.01 and 0.001 respectively. All
the weights of v are initialized with the reciprocal of the
base-learner number, i.e. [0.2, 0.2, 0.2, 0.2, 0.2].
The hyperparameters of meta-learners. The meta itera-
tion number is set to 60k and 50k for MAML and MAML++
respectively. The meta batch size is 4, and the meta learn-
ing rate for the initialization parameters θ is 0.001 (β4).
All the above settings exactly follow [11] and [2]. For the
new added meta-learners, the meta learning rates are set to
β1 = 0.0001, β2 = 0.00001, and β3 = 0.0001 for α, λ,
and v respectively.
The most related methods. MAML [11] is commonly
used as baseline, and MAML++ [2] is the most recently
published state-of-the-art method also using 4CONV as
base architecture. MAML++ introduced six training tips
which contribute to stable and efficient meta-training pro-
cess. Our approach is called LCC. If we use the training
tips of MAML++, we obtain an improved version called
LCC++. Note that LCC++ and MAML++ have the overlap
of learning layerwise learning rates. For this part, we use
our implementation as we can set flexible stepsizes for the
meta update. Therefore, LCC++ actually uses the other five
training tips of MAML++.

5.2. Results and analyses

We conduct extensive few-shot learning experiments. In
Table 1 and Table 2, we present our results compared to
the state-of-the-art, respectively on the miniImageNet and
FC100 datasets. In Table 3, we provide an ablation study
for several components of our approach, on miniImageNet.
In Figure 4, we show the specific changes on the recogni-
tion accuracies in different ablative settings. In Figure 3,
we particularly plot the weight changes of multiple base-
learners during meta-learning in (a), and show its boost per-
formance compared to baseline settings in (b), as “multi-
ple base-learners” is one of our main contributions. For the
other contribution of “meta-learning hyperparameter”, we
plot extensive curves in Figure 5 and Figure 6.
Overview on miniImageNet. In Table 1, we can see
that our LCC++ achieves the best performance in both 1-
shot (54.6%) and 5-shot (71.1%) settings, compared to the
methods with the same 4CONV architecture. Only meth-
ods [40, 54, 45, 42] that use deeper neural networks with
expensive pre-training as an important pre-processing step
do obtain higher performance. Similarly, we expect further
gains of our approach using similar pre-training strategies.
Overview on FC100. In Table 2, we present the results of
TADAM [40] and MTL [54] using their reported numbers.
We note that the numbers of MAML are from [54], and
those of MAML++ are our results using the public code.

Method Arch. 1-shot 5-shot

TADAM [40]‡ ResNet12 58.5 ± 0.3 76.7 ± 0.3

MTL [54]‡ ResNet12 61.2 ± 1.8 75.5 ± 0.8

LEO [45]‡ WRN-28 61.76 ± 0.08 77.59 ± 0.12

PFA [42]‡ WRN-28 59.60 ± 0.41 73.74 ± 0.19

MatchingNets [59] 4CONV 43.44 ± 0.77 55.31 ± 0.73
ProtoNets [49] 4CONV 49.42 ± 0.78 68.20 ± 0.66
Meta-LSTM [43] 4CONV 43.56 ± 0.84 60.60 ± 0.71
Bilevel [13] 4CONV 50.54 ± 0.85 64.53 ± 0.68
CompareNets [57] 4CONV 50.44 ± 0.82 65.32 ± 0.70
LLAMA [17] 4CONV 49.40 ± 1.83 –
Baseline++ [8] 4CONV 48.24 ± 0.75 66.43 ± 0.63

MAML [11] 4CONV 48.70 ± 1.75 63.11 ± 0.92
MAML++ [2] 4CONV 52.15 ± 0.26 68.32 ± 0.44

LCC (Ours) 4CONV 54.0 ± 1.8 65.8 ± 0.9
LCC++ (Ours) 4CONV 54.6 ± 0.4 71.1 ± 0.4
‡Pre-trained on many-shot classification task

Table 1. Few-shot classification accuracy (%) on miniImageNet.

When comparing methods using the same base learning ar-
chitecture 4CNOV, that is LCC vs MAML and LCC++ vs.
MAML++, we can see that our approach LCC (LCC++)
obtains better performance. For example, LCC++ achieves
1.0%, 2.3%, and 2.1% improvement on 1-shot, 5-shot, and
10-shot respectively over MAML++. Quite interestingly,
on this more challenging dataset, our approach (4CONV)
achieves comparable results to TADAM which uses a pre-
trained and deeper network (ResNet12).
Multiple base-learners with learnable weights v. In Ta-
ble 3, we can see that with fixed α and λ, our approach us-
ing multiple base-learners with learnable weighting scheme
(No.6) performs better than a single base-learner (No.2) as
well as multiple base-learners with fixed average weights
(No.1). Please note that No.2 essentially corresponds to the
setting of MAML, but the results here are slightly lower
than reported in Table 1 (48.70%, 63.11%). This is because
the original MAML ran meta-train with 5 epochs and ran

Method 1-shot 5-shot 10-shot

TADAM [40]‡ 40.1 ± 0.4 56.1 ± 0.4 61.5 ± 0.5

MTL [54]‡ 45.1 ± 1.8 57.6 ± 0.9 63.4 ± 0.8

MAML [11]� 38.1 ± 1.7 50.4 ± 1.0 56.2 ± 0.8

MAML++ [2]† 38.7 ± 0.4 52.9 ± 0.4 58.8 ± 0.4

LCC (Ours) 40.6 ± 1.8 52.7 ± 0.9 56.9 ± 0.8
LCC++ (Ours) 39.7 ± 0.4 55.2 ± 0.4 60.9 ± 0.4
�Reported in [54]
†Our implementation using the public code
‡Pre-trained on many-shot classification task

Table 2. Few-shot classification accuracy (%) on FC100.

No.
Meta-learned Accuracy

α λ v 1-shot 5-shot

1 E 47.0 ± 1.8 62.0 ± 0.9

2 S 48.0 ± 1.8 62.4 ± 0.9
3 X S 49.7 ± 1.8 64.4 ± 0.9
4 X S 49.0 ± 1.8 63.4 ± 0.9
5 X X S 49.0 ± 1.8 65.0 ± 0.9

6 L 49.7 ± 1.8 65.4 ± 0.9
7 X L 52.9 ± 1.8 65.6 ± 0.9
8 X L 48.6 ± 1.8 64.7 ± 0.9

LCC(Ours) X X L 54.0 ± 1.8 65.8 ± 0.9

“oracle” v O 52.4 ± 1.8 64.7 ± 0.9

Table 3. Ablation results (%) on miniImageNet. L denotes that
v is Learnable; S means using a Single base-learner, i.e. v is
fixed as [0, 0, 0, 0, 1]; and E denotes an ablation case with fixed
Equal weights v = [0.2, 0.2, 0.2, 0.2, 0.2]. The last row shows
the “oracle” by assuming the “Optimal” (denoted as O) values of
v have been learned by LCC(Ours) and are fixed during training.

meta-test with 10 epochs. Here, we report the results of us-
ing meta-test with 5 epochs (for fair comparison with our
approach which also uses 5 epochs). The last row of Ta-
ble 3 shows the “oracle” results by assuming the “Optimal”
values of v have been learned by LCC and are fixed dur-
ing training. They are clearly higher than the results of any
arbitrary v (No.1 or No.2), especially in the 1-shot setting.

For No.1, 2, 6, the validation accuracies during meta-
train are shown in Figure 3(b). No.1 gives BL-1 with
weights fixed to 0.2 which causes stronger fluctuations in
later iterations (red curve). By contrast, our method auto-
matically adjusts this weight to close to 0 when other learn-
ers become mature, see Figure 3(a). With automatic tuning,
our approach performs the best during the entire meta-train.

From Figure 3(a) we can observe that the weights of the
5 base-learners are initialized as 0.2 and then adapted over
time. Intuitively, an increase relates to the fact that a base-
learners become more mature in later iterations. Interest-
ingly, base-learners working at later epochs gain relatively
higher weights but the base-learner working at the initial
epoch (the BL-1) tends to be disabled when the meta-train
process converges after around 30k iterations.
Meta-learning hyperparameters α and λ. The fine-
grained hyperparameters, i.e. layerwise learning rates α
and regularization weights λ, can be automatically learned
by our LCC approach. In Table 3, we have two blocks to
present the ablative results of using single base-learner (S)
and using multiple base-learners with learnable combina-
tion weights (L) in the miniImageNet 1-shot and 5-shot set-
tings. Particularly in Figure 4, we demonstrate the valida-
tion curves (the curve smooth rate is 0.7) of the whole meta-
train processes. It is clearly shown that our approach with

10k 20k 30k 40k 50k
iterations

0.2

0.3

0.4

0.5

0.6

0.7

co
m

bi
na

tio
n

w
ei

gh
t BL-1

BL-2
BL-3
BL-4
BL-5

10k 20k 30k 40k 50k
iterations

0.35

0.4

0.45

0.5

ac
cu

ra
cy

E
L
S

(a) (b)

Figure 3. Meta-learned v value and meta validation accuracy on
miniImageNet 1-shot. (a) The changes of v values during the
meta-training. (b) The meta validation accuracy comparison for
different settings of v. E, S, and L are from Table 3 and curves in
(b) correspond to No.1, No.2 and No.6, respectively.

10k 20k 30k 40k 50k
iterations

0.44

0.46

0.48

0.5

ac
cu

ra
cy

L
L
L
L

10k 20k 30k 40k 50k
iterations

0.6

0.61

0.62

0.63

0.64

0.65

L
L
L
L

(a) (b)

Figure 4. Meta validation results of our ablation study on miniIm-
ageNet 1-shot (a) and 5-shot (b). From top to down, they corre-
spond to the No.6, No.7, No.8 and LCC(Ours) in Table 3.

10k 20k 30k 40k
iterations

0

0.05

0.1

le
ar

ni
ng

 r
at

e

conv1
conv2
conv3
conv4
fc5

10k 20k 30k 40k
iterations

0

0.05

0.1 BL-1
BL-2
BL-3
BL-4
BL-5

(a) (b)

Figure 5. Learning rates α in the meta-learning procedure. (a) Val-
ues of each layer averaged over 5 base-learners; (b) Using a single
learning rate for each base-learner (i.e., α is a learnable scale but
not layerwise).

meta-learned hyperparameters achieves top performance.
About α. In Table 3, comparing No.3 to No.2 and No.7
to No.6, we can conclude that meta-learning layerwise α
consistently improves the model performance, e.g. it gains
3.2% for the case of using multiple base-learners in 1-shot
setting. We can observe the change of layerwise α in Fig-
ure 5(a), and the change of a single learning rate for each
base-learner in Figure 5(b). Note that (a) shows the results
of using multiple base-learners, for which the curve of a
specific layer is obtained by averaging over the exact lay-
ers of all base-learners. In this “averaged base-learner”, we

10k 20k 30k 40k
iterations

-0.2

0

0.2

0.4

re
gu

la
ri

za
tio

n
w

ei
gh

t conv1
conv2
conv3
conv4
fc5

10k 20k 30k 40k
iterations

-0.2

0

0.2

0.4

BL-1
BL-2
BL-3
BL-4
BL-5

(a) (b)

Figure 6. Regularization weights λ in the whole meta-learning
procedure. (a) Values of each layer averaged over 5 base-learners;
(b) Values of each base-learner averaged over 5 layers.

can observe that higher-level conv layers learn to increase
their learning rates. It is quite amazing that conv4 explores
a much bigger learning step, around 70 times higher than
its initial value of 0.01. While in (b), when each base-
learner has a single learning rate to learn, the global change
of this rate is in a small range, e.g. the biggest jump in
BL-5(purple) is from 0.01 to around 0.03.

It also shows in (b) that base-learners working at later
epochs tend to get higher learning rates. This is opposite
to the common schedule, i.e. monotonically decreasing
the learning rate, of traditional large-scale network train-
ing [18]. In our few-shot case, this increasing phenomenon
can be interpreted as: our LCC learns to update more on the
base-learners which have both maturer patterns and higher
combination weights (i.e. v values), and in turn gets greater
feedback from them for meta optimization.

About λ. In Table 3, comparing No.4 to No.3 and No.8
to No.7, we can see that meta-learning λ does not help as
much as meta-learning α. While, meta-learning them to-
gether (i.e. L α λ) makes consistent improvements. Fig-
ure 4 gives more detailed results. The superiority of learn-
ing α and λ is significant in the 5-shot case (b).

In Figure 6, we present the curves of meta-learned λ. In
(a), the λ value of an individual layer is the average of those
of 5 base-learners. We can see that high-level layers learn to
have higher λ values. We believe this is a collaborating be-
havior with the simultaneously meta-learned α which also
gets increased in higher-level layers (Figure 5(a)). An intu-
itive interpretation is that heavily penalizing peaky weights
is needed when the weights are updated with large steps.
Another interesting point in Figure 6(a) is the values of λ
of conv1 become negative after 10k iterations. This can
be explained that the gradient vanishing problem probably
happens during the training with very scarce samples. Our
LCC learns to use negative λ to penalize such vanishing.
Figure 6(b) shows that LCC can learn to adapt the values of
λ for multiple base-learners. For convenient visualization,
layerwise λ values of each base-learner are averaged.

6. Conclusions

We propose a novel LCC approach that learns to cus-
tomize a sequence of base-learns and learns to combine
their prediction results. It addresses shortcomings of pre-
vious meta-learning approaches by meta-learning hyperpa-
rameters both layer-wise as well as over time and allows
to use an ensemble of base-learners. Following the meta-
learning paradigm, the method allows to achieve top perfor-
mance in comparison to related work. The design of our ap-
proach is independent from a specific base-learning model,
i.e. base-learner architecture, and can be generalized also to
pre-trained and deeper networks.

Acknowledgments
This research is part of NExT++ research supported by

the National Research Foundation, Prime Minister’s Office,
Singapore under its IRC@SG Funding Initiative. It is also
partially supported by German Research Foundation (DFG
CRC 1223), and National Natural Science Foundation of
China (61772359).

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. arXiv, 1603.04467, 2016.

[2] A. Antoniou, H. Edwards, and A. Storkey. How to train your
maml. In ICLR, 2019.

[3] E. Bart and S. Ullman. Cross-generalization: Learning novel
classes from a single example by feature replacement. In
CVPR, 2005.

[4] Y. Bengio. Gradient-based optimization of hyperparameters.
Neural Computation, 12(8):1889–1900, 2000.

[5] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search, 13:281–305, 2012.

[6] L. Breiman. Stacked regressions. Machine learning,
24(1):49–64, 1996.

[7] R. Caruana. Learning many related tasks at the same time
with backpropagation. In NIPS, 1994.

[8] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang.
A closer look at few-shot classification. In ICLR, 2019.

[9] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus).
In ICLR, 2016.

[10] J. Domke. Generic methods for optimization-based model-
ing. In AISTATS, 2012.

[11] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017.

[12] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning. In NeurIPS, 2018.

[13] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil.
Bilevel programming for hyperparameter optimization and
meta-learning. In ICML, 2018.

[14] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

[15] J. H. Friedman. Stochastic gradient boosting. Computational
statistics & data analysis, 38(4):367–378, 2002.

[16] H. E. Geoffrey and P. C. David. Using fast weights to deblur
old memories. In CogSci, 1987.

[17] E. Grant, C. Finn, S. Levine, T. Darrell, and T. L. Grif-
fiths. Recasting gradient-based meta-learning as hierarchical
bayes. In ICLR, 2018.

[18] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag
of tricks for image classification with convolutional neural
networks. arXiv, 2018.

[19] T. K. Ho. Random decision forests. In ICDAR, 1995.
[20] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential

model-based optimization for general algorithm configura-
tion. In LION, 2011.

[21] F. Hutter, J. Lücke, and L. Schmidt-Thieme. Beyond manual
tuning of hyperparameters. KI, 29(4):329–337, 2015.

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015.

[23] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki,
J. Donahue, A. Razavi, O. Vinyals, T. Green, I. Dunning,
K. Simonyan, C. Fernando, and K. Kavukcuoglu. Population
based training of neural networks. arXiv, 1711.09846, 2017.

[24] C. Ju, A. Bibaut, and M. J. van der Laan. The relative perfor-
mance of ensemble methods with deep convolutional neural
networks for image classification. arXiv, 1704.01664, 2017.

[25] A. Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2009.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[27] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in
classifier ensembles and their relationship with the ensemble
accuracy. Machine Learning, 51(2):181–207, 2003.

[28] S. Laine and T. Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017.

[29] Y. Lee and S. Choi. Gradient-based meta-learning with
learned layerwise metric and subspace. In ICML, 2018.

[30] F. Li, R. Fergus, and P. Perona. One-shot learning of ob-
ject categories. IEEE Trans. Pattern Anal. Mach. Intell.,
28(4):594–611, 2006.

[31] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. Journal of Machine Learning
Research, 18:185:1–185:52, 2017.

[32] J. Luketina, T. Raiko, M. Berglund, and K. Greff. Scalable
gradient-based tuning of continuous regularization hyperpa-
rameters. In ICML, 2016.

[33] D. Maclaurin, D. K. Duvenaud, and R. P. Adams. Gradient-
based hyperparameter optimization through reversible learn-
ing. In ICML, 2015.

[34] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-
Dickstein. Meta-learning update rules for unsupervised rep-
resentation learning. In ICLR, 2019.

[35] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. Snail:
A simple neural attentive meta-learner. In ICLR, 2018.

[36] T. Mitchell. Machine learning, mcgraw-hill higher educa-
tion. New York, 1997.

[37] T. Munkhdalai and H. Yu. Meta networks. In ICML, 2017.
[38] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. Rapid

adaptation with conditionally shifted neurons. In ICML,
2018.

[39] D. K. Naik and R. Mammone. Meta-neural networks that
learn by learning. In IJCNN, 1992.

[40] B. N. Oreshkin, P. Rodrı́guez, and A. Lacoste. TADAM: task
dependent adaptive metric for improved few-shot learning.
In NeurIPS, 2018.

[41] M. Ozay and F. T. Y. Vural. A new fuzzy stacked gener-
alization technique and analysis of its performance. arXiv,
1204.0171, 2012.

[42] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot image
recognition by predicting parameters from activations. In
CVPR, 2018.

[43] S. Ravi and H. Larochelle. Optimization as a model for few-
shot learning. In ICLR, 2017.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[45] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,
S. Osindero, and R. Hadsell. Meta-learning with latent em-
bedding optimization. In ICLR, 2019.

[46] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and
T. P. Lillicrap. Meta-learning with memory-augmented neu-
ral networks. In ICML, 2016.

[47] J. Schmidhuber. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-...
hook. PhD thesis, Technische Universität München, 1987.

[48] P. Smyth and D. Wolpert. Linearly combining density es-
timators via stacking. Machine Learning, 36(1-2):59–83,
1999.

[49] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks
for few-shot learning. In NIPS, 2017.

[50] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. In NIPS, 2012.

[51] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sun-
daram, M. M. A. Patwary, Prabhat, and R. P. Adams. Scal-
able bayesian optimization using deep neural networks. In
ICML, 2015.

[52] J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams. Input
warping for bayesian optimization of non-stationary func-
tions. In ICML, 2014.

[53] P. Sollich and A. Krogh. Learning with ensembles: How
overfitting can be useful. In NIPS, 1995.

[54] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. Meta-transfer
learning for few-shot learning. In CVPR, 2019.

[55] Q. Sun, L. Ma, S. Joon Oh, L. Van Gool, B. Schiele, and
M. Fritz. Natural and effective obfuscation by head inpaint-
ing. In CVPR, 2018.

[56] Q. Sun, B. Schiele, and M. Fritz. A domain based approach
to social relation recognition. In CVPR, 2017.

[57] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and
T. M. Hospedales. Learning to compare: Relation network
for few-shot learning. In CVPR, 2018.

[58] S. Thrun and L. Pratt. Learning to learn: Introduction and
overview. In Learning to learn, pages 3–17. Springer, 1998.

[59] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra. Matching networks for one shot learning. In
NIPS, 2016.

[60] Y. Wang, R. B. Girshick, M. Hebert, and B. Hariharan. Low-
shot learning from imaginary data. In CVPR, 2018.

[61] Y.-X. Wang and M. Hebert. Learning from small sample
sets by combining unsupervised meta-training with cnns. In
NIPS, 2016.

[62] Y. Xian, S. Sharma, B. Schiele, and Z. Akata. f-VAEGAN-
D2: A feature generating framework for any-shot learning.
In CVPR, 2019.

[63] R. Zhang, T. Che, Z. Grahahramani, Y. Bengio, and Y. Song.
Metagan: An adversarial approach to few-shot learning. In
NeurIPS, 2018.

	1 . Introduction
	2 . Related works
	3 . Preliminary
	3.1 . Episodic formulation
	3.2 . Meta gradient descent

	4 . Learning to Customize and Combine (LCC)
	4.1 . Initiate the sequence of base-learners
	4.2 . Learn to customize base-learners
	4.3 . Learn to combine base-learners
	4.4 . Overall optimization and algorithm

	5 . Experiments
	5.1 . Datasets and implementation details
	5.2 . Results and analyses

	6 . Conclusions

