
Meta-Transfer Learning for Few-Shot Learning

Qianru Sun1,3∗ Yaoyao Liu2∗ Tat-Seng Chua1 Bernt Schiele3

1National University of Singapore 2Tianjin University†

3Max Planck Institute for Informatics, Saarland Informatics Campus

{qsun, schiele}@mpi-inf.mpg.de
liuyaoyao@tju.edu.cn {dcssq, dcscts}@nus.edu.sg

Abstract

Meta-learning has been proposed as a framework to ad-
dress the challenging few-shot learning setting. The key
idea is to leverage a large number of similar few-shot tasks
in order to learn how to adapt a base-learner to a new task
for which only a few labeled samples are available. As deep
neural networks (DNNs) tend to overfit using a few samples
only, meta-learning typically uses shallow neural networks
(SNNs), thus limiting its effectiveness. In this paper we pro-
pose a novel few-shot learning method called meta-transfer
learning (MTL) which learns to adapt a deep NN for few
shot learning tasks. Specifically, meta refers to training
multiple tasks, and transfer is achieved by learning scal-
ing and shifting functions of DNN weights for each task.
In addition, we introduce the hard task (HT) meta-batch
scheme as an effective learning curriculum for MTL. We
conduct experiments using (5-class, 1-shot) and (5-class, 5-
shot) recognition tasks on two challenging few-shot learn-
ing benchmarks: miniImageNet and Fewshot-CIFAR100.
Extensive comparisons to related works validate that our
meta-transfer learning approach trained with the proposed
HT meta-batch scheme achieves top performance. An ab-
lation study also shows that both components contribute to
fast convergence and high accuracy1.

1. Introduction

While deep learning systems have achieved great perfor-
mance when sufficient amounts of labeled data are avail-
able [17, 46, 58], there has been growing interest in reduc-
ing the required amount of data. Few-shot learning tasks
have been defined for this purpose. The aim is to learn
new concepts from few labeled examples, e.g. 1-shot learn-

∗Equal contribution.
†Yaoyao Liu did this work during his internship at NUS.
1Code: https://github.com/yaoyao-liu/meta-transfer-learning

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

L2 loss

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

meta-training

Transfer Learning [35]

Meta-Learning [9]

task2
model1 + FT

...task1
model1

taskN
modelN

taskN+1
modelN+1

Meta-Transfer Learning
(ours)

...task
model

task1
model1

k tasks
Meta-Batch [9]

Hard Task Meta-Batch
(ours) ...k tasks + k’ hard tasks

batch i
k tasks

batch i+1

batch i batch i+1

meta-test

...

... k tasks + k’ hard tasks

online re-sampleonline re-sample

...

large-scale training

task1
model + SS1 + FT1

taskN
model + SSN + FTN

taskN+1
model + SSN + FTN+1

Figure 1. Meta-transfer learning (MTL) is our meta-learning
paradigm and hard task (HT) meta-batch is our training strategy.
The upper three rows show the differences between MTL and re-
lated methods, transfer-learning [35] and meta-learning [9]. The
bottom rows compare HT meta-batch with the conventional meta-
batch [9]. FT stands for fine-tuning a classifier. SS represents the
Scaling and Shifting operations in our MTL method.

ing [25]. While humans tend to be highly effective in this
context, often grasping the essential connection between
new concepts and their own knowledge and experience, it
remains challenging for machine learning approaches. E.g.,
on the CIFAR-100 dataset, a state-of-the-art method [34]
achieves only 40.1% accuracy for 1-shot learning, com-
pared to 75.7% for the all-class fully supervised case [6].

Few-shot learning methods can be roughly categorized
into two classes: data augmentation and task-based meta-
learning. Data augmentation is a classic technique to in-
crease the amount of available data and thus also use-
ful for few-shot learning [21]. Several methods propose
to learn a data generator e.g. conditioned on Gaussian
noise [29, 44, 54]. However, the generation models often

https://github.com/yaoyao-liu/meta-transfer-learning

underperform when trained on few-shot data [1]. An alter-
native is to merge data from multiple tasks which, however,
is not effective due to variances of the data across tasks [54].

In contrast to data-augmentation methods, meta-learning
is a task-level learning method [2, 33, 52]. Meta-learning
aims to accumulate experience from learning multiple tasks
[9, 13, 31, 39, 48], while base-learning focuses on model-
ing the data distribution of a single task. A state-of-the-
art representative of this, namely Model-Agnostic Meta-
Learning (MAML), learns to search for the optimal initial-
ization state to fast adapt a base-learner to a new task [9].
Its task-agnostic property makes it possible to generalize to
few-shot supervised learning as well as unsupervised rein-
forcement learning [10, 13]. However, in our view, there
are two main limitations of this type of approaches lim-
iting their effectiveness: i) these methods usually require
a large number of similar tasks for meta-training which is
costly; and ii) each task is typically modeled by a low-
complexity base learner (such as a shallow neural network)
to avoid model overfitting, thus being unable to use deeper
and more powerful architectures. For example, for the mini-
ImageNet dataset [53], MAML uses a shallow CNN with
only 4 CONV layers and its optimal performance was ob-
tained learning on 240k tasks.

In this paper, we propose a novel meta-learning method
called meta-transfer learning (MTL) leveraging the ad-
vantages of both transfer and meta learning (see concep-
tual comparison of related methods in Figure 1). In a nut-
shell, MTL is a novel learning method that helps deep neu-
ral nets converge faster while reducing the probability to
overfit when using few labeled training data only. In partic-
ular, “transfer” means that DNN weights trained on large-
scale data can be used in other tasks by two light-weight
neuron operations: Scaling and Shifting (SS), i.e. αX + β.
“Meta” means that the parameters of these operations can
be viewed as hyper-parameters trained on few-shot learn-
ing tasks [26, 31]. Large-scale trained DNN weights offer
a good initialization, enabling fast convergence of meta-
transfer learning with fewer tasks, e.g. only 8k tasks for
miniImageNet [53], 30 times fewer than MAML [9]. Light-
weight operations on DNN neurons have less parameters to
learn, e.g. less than 2

49 if considering neurons of size 7× 7
(1

49 for α and < 1
49 for β), reducing the chance of overfit-

ting. In addition, these operations keep those trained DNN
weights unchanged, and thus avoid the problem of “catas-
trophic forgetting” which means forgetting general patterns
when adapting to a specific task [27, 28].

The second main contribution of this paper is an effec-
tive meta-training curriculum. Curriculum learning [3] and
hard negative mining [47] both suggest that faster conver-
gence and stronger performance can be achieved by a better
arrangement of training data. Inspired by these ideas, we
design our hard task (HT) meta-batch strategy to offer a

challenging but effective learning curriculum. As shown in
the bottom rows of Figure 1, a conventional meta-batch con-
tains a number of random tasks [9], but our HT meta-batch
online re-samples harder ones according to past failure tasks
with lowest validation accuracy.

Our overall contribution is thus three-fold: i) we pro-
pose a novel MTL method that learns to transfer large-
scale pre-trained DNN weights for solving few-shot learn-
ing tasks; ii) we propose a novel HT meta-batch learn-
ing strategy that forces meta-transfer to “grow faster and
stronger through hardship”; and iii) we conduct extensive
experiments on two few-shot learning benchmarks, namely
miniImageNet [53] and Fewshot-CIFAR100 (FC100) [34],
and achieve the state-of-the-art performance.

2. Related work

Few-shot learning Research literature on few-shot learning
exhibits great diversity. In this section, we focus on meth-
ods using the supervised meta-learning paradigm [9,12,52]
most relevant to ours and compared to in the experiments.
We can divide these methods into three categories. 1) Met-
ric learning methods [48, 51, 53] learn a similarity space in
which learning is efficient for few-shot examples. 2) Mem-
ory network methods [30, 31, 34, 42] learn to store “ex-
perience” when learning seen tasks and then generalize
that to unseen tasks. 3) Gradient descent based methods
[9, 13, 24, 39, 60] have a specific meta-learner that learns
to adapt a specific base-learner (to few-shot examples)
through different tasks. E.g. MAML [9] uses a meta-learner
that learns to effectively initialize a base-learner for a new
learning task. Meta-learner optimization is done by gra-
dient descent using the validation loss of the base-learner.
Our method is closely related. An important difference is
that our MTL approach leverages transfer learning and ben-
efits from referencing neuron knowledge in pre-trained deep
nets. Although MAML can start from a pre-trained net-
work, its element-wise fine-tuning makes it hard to learn
deep nets without overfitting (validated in our experiments).
Transfer learning What and how to transfer are key issues
to be addressed in transfer learning, as different methods
are applied to different source-target domains and bridge
different transfer knowledge [35,55,57,59]. For deep mod-
els, a powerful transfer method is adapting a pre-trained
model for a new task, often called fine-tuning (FT). Mod-
els pre-trained on large-scale datasets have proven to gen-
eralize better than randomly initialized ones [8]. Another
popular transfer method is taking pre-trained networks as
backbone and adding high-level functions, e.g. for object
detection and recognition [18, 49, 50] and image segmenta-
tion [5, 16]. Our meta-transfer learning leverages the idea
of transferring pre-trained weights and aims to meta-learn
how to effectively transfer. In this paper, large-scale trained
DNN weights are what to transfer, and the operations of

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

L2 loss

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

Feature Extractor
Base-learner

all-class
train samples

N HT
meta-batches Feature Extractor

Meta-learner SSN
Base-learner FTN

classifier fine-tuning

unseen task
(train samples)

unseen task
(test samples)Feature Extractor

Meta-learner SSN
Base-learner FTN+1

final evaluation

Acc.

(b) meta-transfer learning (c) meta-test(a) large-scale DNN training

whole training phase

Feature Extractor
Meta-learner SSN
Base-learner FTN+1

D {T1∼k}1∼N T (trunseen
) T (te

unseen
)

Figure 2. The pipeline of our proposed few-shot learning method, including three phases: (a) DNN training on large-scale data, i.e. using
all training datapoints (Section 4.1); (b) Meta-transfer learning (MTL) that learns the parameters of Scaling and Shifting (SS), based on the
pre-trained feature extractor (Section 4.2). Learning is scheduled by the proposed HT meta-batch (Section 4.3); and (c) meta-test is done
for an unseen task which consists of a base-learner (classifier) Fine-Tuning (FT) stage and a final evaluation stage, described in the last
paragraph in Section 3. Input data are along with arrows. Modules with names in bold get updated at corresponding phases. Specifically,
SS parameters are learned by meta-training but fixed during meta-test. Base-learner parameters are optimized for every task.

Scaling and Shifting indicate how to transfer. Similar op-
erations have been used to modulating the per-feature-map
distribution of activations for visual reasoning [37].

Some few-shot learning methods have been proposed to
use pre-trained weights as initialization [20, 30, 38, 41, 45].
Typically, weights are fine-tuned for each task, while we
learn a meta-transfer learner through all tasks, which is dif-
ferent in terms of the underlying learning paradigm.
Curriculum learning & Hard sample mining Curriculum
learning was proposed by Bengio et al. [3] and is popular
for multi-task learning [14, 36, 43, 56]. They showed that
instead of observing samples at random it is better to orga-
nize samples in a meaningful way so that fast convergence,
effective learning and better generalization can be achieved.
Pentina et al. [36] use adaptive SVM classifiers to evaluate
task difficulty for later organization. Differently, our MTL
method does task evaluation online at the phase of episode
test, without needing any auxiliary model.

Hard sample mining was proposed by Shrivastava et
al. [47] for object detection. It treats image proposals over-
lapped with ground truth as hard negative samples. Train-
ing on more confusing data enables the model to achieve
higher robustness and better performance [4,7,15]. Inspired
by this, we sample harder tasks online and make our MTL
learner “grow faster and stronger through more hardness”.
In our experiments, we show that this can be generalized to
enhance other meta-learning methods, e.g. MAML [9].

3. Preliminary
We introduce the problem setup and notations of meta-

learning, following related work [9, 34, 39, 53].
Meta-learning consists of two phases: meta-train and
meta-test. A meta-training example is a classification task
T sampled from a distribution p(T). T is called episode,
including a training split T (tr) to optimize the base-learner,
and a test split T (te) to optimize the meta-learner. In partic-
ular, meta-training aims to learn from a number of episodes
{T } sampled from p(T). An unseen task Tunseen in meta-
test will start from that experience of the meta-learner and

adapt the base-learner. The final evaluation is done by test-
ing a set of unseen datapoints T (te)

unseen.
Meta-training phase. This phase aims to learn a meta-
learner from multiple episodes. In each episode, meta-
training has a two-stage optimization. Stage-1 is called
base-learning, where the cross-entropy loss is used to opti-
mize the parameters of the base-learner. Stage-2 contains a
feed-forward test on episode test datapoints. The test loss is
used to optimize the parameters of the meta-learner. Specif-
ically, given an episode T ∈ p(T), the base-learner θT is
learned from episode training data T (tr) and its correspond-
ing lossLT (θT , T (tr)). After optimizing this loss, the base-
learner has parameters θ̃T . Then, the meta-learner is up-
dated using test loss LT (θ̃T , T (te)). After meta-training
on all episodes, the meta-learner is optimized by test losses
{LT (θ̃T , T (te))}T ∈p(T). Therefore, the number of meta-
learner updates equals to the number of episodes.
Meta-test phase. This phase aims to test the performance
of the trained meta-learner for fast adaptation to unseen
task. Given Tunseen, the meta-learner θ̃T teaches the base-
learner θTunseen to adapt to the objective of Tunseen by
some means, e.g. through initialization [9]. Then, the test
result on T (te)

unseen is used to evaluate the meta-learning ap-
proach. If there are multiple unseen tasks {Tunseen}, the
average result on {T (te)

unseen} will be the final evaluation.

4. Methodology

As shown in Figure 2, our method consists of three
phases. First, we train a DNN on large-scale data, e.g. on
miniImageNet (64-class, 600-shot) [53], and then fix the
low-level layers as Feature Extractor (Section 4.1). Second,
in the meta-transfer learning phase, MTL learns the Scal-
ing and Shifting (SS) parameters for the Feature Extractor
neurons, enabling fast adaptation to few-shot tasks (Sec-
tion 4.2). For improved overall learning, we use our HT
meta-batch strategy (Section 4.3). The training steps are
detailed in Algorithm 1 in Section 4.4. Finally, the typical
meta-test phase is performed, as introduced in Section 3.

4.1. DNN training on large-scale data

This phase is similar to the classic pre-training stage as,
e.g., pre-training on Imagenet for object recognition [40].
Here, we do not consider data/domain adaptation from other
datasets, and pre-train on readily available data of few-shot
learning benchmarks, allowing for fair comparison with
other few-shot learning methods. Specifically, for a partic-
ular few-shot dataset, we merge all-class data D for pre-
training. For instance, for miniImageNet [53], there are
totally 64 classes in the training split of D and each class
contains 600 samples used to pre-train a 64-class classifier.

We first randomly initialize a feature extractor Θ (e.g.
CONV layers in ResNets [17]) and a classifier θ (e.g. the
last FC layer in ResNets [17]), and then optimize them by
gradient descent as follows,

[Θ; θ] =: [Θ; θ]− α∇LD
(
[Θ; θ]

)
, (1)

where L denotes the following empirical loss,

LD
(
[Θ; θ]

)
=

1

|D|
∑

(x,y)∈D
l
(
f[Θ;θ](x), y

)
, (2)

e.g. cross-entropy loss, and α denotes the learning rate.
In this phase, the feature extractor Θ is learned. It will be
frozen in the following meta-training and meta-test phases,
as shown in Figure 2. The learned classifier θ will be dis-
carded, because subsequent few-shot tasks contain differ-
ent classification objectives, e.g. 5-class instead of 64-class
classification for miniImageNet [53].

4.2. Meta-transfer learning (MTL)

As shown in Figure 2(b), our proposed meta-transfer
learning (MTL) method optimizes the meta operations Scal-
ing and Shifting (SS) through HT meta-batch training (Sec-
tion 4.3). Figure 3 visualizes the difference of updating
through SS and FT. SS operations, denoted as ΦS1

and ΦS2
,

do not change the frozen neuron weights of Θ during learn-
ing, while FT updates the complete Θ.

In the following, we detail the SS operations. Given a
task T , the loss of T (tr) is used to optimize the current
base-learner (classifier) θ′ by gradient descent:

θ′ ← θ − β∇θLT (tr)

(
[Θ; θ],ΦS{1,2}

)
, (3)

which is different to Eq. 1, as we do not update Θ. Note
that here θ is different to the one from the previous phase,
the large-scale classifier θ in Eq. 1. This θ concerns only
a few of classes, e.g. 5 classes, to classify each time in a
novel few-shot setting. θ′ corresponds to a temporal clas-
sifier only working in the current task, initialized by the θ
optimized for the previous task (see Eq. 5).

ΦS1 is initialized by ones and ΦS1 by zeros. Then, they
are optimized by the test loss of T (te) as follows,

ΦSi
=: ΦSi

− γ∇ΦSi
LT (te)

(
[Θ; θ′],ΦS{1,2}

)
. (4)

: 1x4x1x1

 : Cx4x1x1

 : 1x4x1x1 : Cx4x3x3

: 1x4x1x1 : Cx4x3x3

 : 1x4x1x1 : Cx4x1x1

: 1x4x1x1

epi-test

epi-training

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

base gradient back-prop.
(multiple epochs)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

Predicted
accuracy

L2 loss

meta gradient back-prop. (once)

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

(b) Our Scaling S1 and Shifting S2

frozen learnable

. .+ +

(a) Parameter-level Fine-Tuning (FT)

C x C x

C x C x

 : Cx4x3x3

C x

: 1x4x1x1

C x

: Cx4x3x3

W b W ′ b′

ΦS1 ΦS2 Φ′
S1

Φ′
S2

T

W b W b

update

T
update

Figure 3. (a) Parameter-level Fine-Tuning (FT) is a conventional
meta-training operation, e.g. in MAML [9]. Its update works for
all neuron parameters, W and b. (b) Our neuron-level Scaling and
Shifting (SS) operations in MTL. They reduce the number of learn-
ing parameters and avoid overfitting problems. In addition, they
keep large-scale trained parameters (in yellow) frozen, preventing
“catastrophic fogetting” [27, 28].

In this step, θ is updated with the same learning rate γ as in
Eq. 4,

θ =: θ − γ∇θLT (te)

(
[Θ; θ′],ΦS{1,2}

)
. (5)

Re-linking to Eq. 3, we note that the above θ′ comes from
the last epoch of base-learning on T (tr).

Next, we describe how we apply ΦS{1,2} to the frozen
neurons as shown in Figure 3(b). Given the trained Θ,
for its l-th layer containing K neurons, we have K pairs
of parameters, respectively as weight and bias, denoted
as {(Wi,k, bi,k)}. Note that the neuron location l, k will
be omitted for readability. Based on MTL, we learn K
pairs of scalars {ΦS{1,2}}. Assuming X is input, we apply
{ΦS{1,2}} to (W, b) as

SS(X;W, b; ΦS{1,2}) = (W � ΦS1
)X + (b+ ΦS2

), (6)

where � denotes the element-wise multiplication.
Taking Figure 3(b) as an example of a single 3 × 3 fil-

ter, after SS operations, this filter is scaled by ΦS1
then the

feature maps after convolutions are shifted by ΦS2
in addi-

tion to the original bias b. Detailed steps of SS are given in
Algorithm 2 in Section 4.4.

Figure 3(a) shows a typical parameter-level Fine-Tuning
(FT) operation, which is in the meta optimization phase of
our related work MAML [9]. It is obvious that FT updates
the complete values of W and b, and has a large number of

parameters, and our SS reduces this number to below 2
9 in

the example of the figure.
In summary, SS can benefit MTL in three aspects. 1)

It starts from a strong initialization based on a large-scale
trained DNN, yielding fast convergence for MTL. 2) It does
not change DNN weights, thereby avoiding the problem
of “catastrophic forgetting” [27, 28] when learning specific
tasks in MTL. 3) It is light-weight, reducing the chance of
overfitting of MTL in few-shot scenarios.

4.3. Hard task (HT) meta-batch

In this section, we introduce a method to schedule hard
tasks in meta-training batches. The conventional meta-
batch is composed of randomly sampled tasks, where the
randomness implies random difficulties [9]. In our meta-
training pipeline, we intentionally pick up failure cases in
each task and re-compose their data to be harder tasks for
adverse re-training. We aim to force our meta-learner to
“grow up through hardness”.
Pipeline. Each task T has two splits, T (tr) and T (te), for
base-learning and test, respectively. As shown in Algo-
rithm 2 line 2-5, base-learner is optimized by the loss of
T (tr) (in multiple epochs). SS parameters are then opti-
mized by the loss of T (te) once. We can also get the recog-
nition accuracy of T (te) for M classes. Then, we choose
the lowest accuracy Accm to determine the most difficult
class-m (also called failure class) in the current task.

After obtaining all failure classes (indexed by {m}) from
k tasks in current meta-batch {T1∼k}, we re-sample tasks
from their data. Specifically, we assume p(T |{m}) is
the task distribution, we sample a “harder” task T hard ∈
p(T |{m}). Two important details are given below.
Choosing hard class-m. We choose the failure class-m
from each task by ranking the class-level accuracies instead
of fixing a threshold. In a dynamic online setting as ours, it
is more sensible to choose the hardest cases based on rank-
ing rather than fixing a threshold ahead of time.
Two methods of hard tasking using {m}. Chosen {m},
we can re-sample tasks T hard by (1) directly using the sam-
ples of class-m in the current task T , or (2) indirectly using
the label of class-m to sample new samples of that class. In
fact, setting (2) considers to include more data variance of
class-m and it works better than setting (1) in general.

4.4. Algorithm

Algorithm 1 summarizes the training process of two
main stages: large-scale DNN training (line 1-5) and meta-
transfer learning (line 6-22). HT meta-batch re-sampling
and continuous training phases are shown in lines 16-20,
for which the failure classes are returned by Algorithm 2,
see line 14. Algorithm 2 presents the learning process on
a single task that includes episode training (lines 2-5) and
episode test, i.e. meta-level update (lines 6). In lines 7-11,

the recognition rates of all test classes are computed and
returned to Algorithm 1 (line 14) for hard task sampling.

Algorithm 1: Meta-transfer learning (MTL)
Input: Task distribution p(T) and corresponding

dataset D, learning rates α, β and γ
Output: Feature extractor Θ, base learner θ, SS

parameters ΦS{1,2}
1 Randomly initialize Θ and θ;
2 for samples in D do
3 Evaluate LD([Θ; θ]) by Eq. 2;
4 Optimize Θ and θ by Eq. 1;
5 end
6 Initialize ΦS1 by ones, initialize ΦS2 by zeros;
7 Reset and re-initialize θ for few-shot tasks;
8 for meta-batches do
9 Randomly sample tasks {T } from p(T);

10 while not done do
11 Sample task Ti ∈ {T };
12 Optimize ΦS{1,2} and θ with Ti by

Algorithm 2;
13 Get the returned class-m then add it to {m};
14 end
15 Sample hard tasks {T hard} from ⊆ p(T |{m});
16 while not done do
17 Sample task T hardj ∈ {T hard} ;
18 Optimize ΦS{1,2} and θ with T hardj by

Algorithm 2 ;
19 end
20 Empty {m}.
21 end

Algorithm 2: Detail learning steps within a task T
Input: T , learning rates β and γ, feature extractor Θ,

base learner θ, SS parameters ΦS{1,2}
Output: Updated θ and ΦS{1,2} , the worst classified

class-m in T
1 Sample T (tr) and T (te) from T ;
2 for samples in T (tr) do
3 Evaluate LT (tr) ;
4 Optimize θ′ by Eq. 3;
5 end
6 Optimize ΦS{1,2} and θ by Eq. 4 and Eq. 5;
7 while not done do
8 Sample class-c in T (te);
9 Compute Accc for T (te);

10 end
11 Return class-m with the lowest accuracy Accm.

5. Experiments

We evaluate the proposed MTL and HT meta-batch in
terms of few-shot recognition accuracy and model conver-
gence speed. Below we describe the datasets and detailed
settings, followed by an ablation study and a comparison to
state-of-the-art methods.

5.1. Datasets and implementation details

We conduct few-shot learning experiments on two
benchmarks, miniImageNet [53] and Fewshot-CIFAR100
(FC100) [34]. miniImageNet is widely used in related
works [9, 11, 13, 32, 39]. FC100 is newly proposed in [34]
and is more challenging in terms of lower image resolution
and stricter training-test splits than miniImageNet.
miniImageNet was proposed by Vinyals et al. [53] for few-
shot learning evaluation. Its complexity is high due to the
use of ImageNet images, but requires less resource and in-
frastructure than running on the full ImageNet dataset [40].
In total, there are 100 classes with 600 samples of 84 × 84
color images per class. These 100 classes are divided into
64, 16, and 20 classes respectively for sampling tasks for
meta-training, meta-validation and meta-test, following re-
lated works [9, 11, 13, 32, 39].
Fewshot-CIFAR100 (FC100) is based on the popular ob-
ject classification dataset CIFAR100 [23]. The splits were
proposed by [34] (Please check details in the supplemen-
tary). It offers a more challenging scenario with lower
image resolution and more challenging meta-training/test
splits that are separated according to object super-classes.
It contains 100 object classes and each class has 600 sam-
ples of 32× 32 color images. The 100 classes belong to 20
super-classes. Meta-training data are from 60 classes be-
longing to 12 super-classes. Meta-validation and meta-test
sets contain 20 classes belonging to 4 super-classes, respec-
tively. These splits accord to super-classes, thus minimize
the information overlap between training and val/test tasks.

The following settings are used on both datasets. We
train a large-scale DNN with all training datapoints (Sec-
tion 4.1) and stop this training after 10k iterations. We use
the same task sampling method as related works [9, 39].
Specifically, 1) we consider the 5-class classification and
2) we sample 5-class, 1-shot (5-shot or 10-shot) episodes to
contain 1 (5 or 10) samples for train episode, and 15 (uni-
form) samples for episode test. Note that in the state-of-
the-art work [34], 32 and 64 samples are respectively used
in 5-shot and 10-shot settings for episode test. In total, we
sample 8k tasks for meta-training (same for w/ and w/o HT
meta-batch), and respectively sample 600 random tasks for
meta-validation and meta-test. Please check the supplemen-
tary document (or GitHub repository) for other implemen-
tation details, e.g. learning rate and dropout rate.
Network architecture. We present the details for the Fea-

ture Extractor Θ, MTL meta-learner with Scaling ΦS1
and

Shifting ΦS2
, and MTL base-learner (classifier) θ.

The architecture of Θ have two options, ResNet-12 and
4CONV, commonly used in related works [9, 30, 32, 34, 39,
53]. 4CONV consists of 4 layers with 3 × 3 convolutions
and 32 filters, followed by batch normalization (BN) [19],
a ReLU nonlinearity, and 2 × 2 max-pooling. ResNet-12
is more popular in recent works [11, 30, 32, 34]. It con-
tains 4 residual blocks and each block has 3 CONV layers
with 3 × 3 kernels. At the end of each residual block, a
2 × 2 max-pooling layer is applied. The number of filters
starts from 64 and is doubled every next block. Following 4
blocks, there is a mean-pooling layer to compress the output
feature maps to a feature embedding. The difference be-
tween using 4CONV and using ResNet-12 in our methods is
that ResNet-12 MTL sees the large-scale data training, but
4CONV MTL is learned from scratch because of its poor
performance for large-scale data training (see results in the
supplementary). Therefore, we emphasize the experiments
of using ResNet-12 MTL for its superior performance. The
architectures of ΦS1 and ΦS2 are generated according to
the architecture of Θ, as introduced in Section 4.2. That is
when using ResNet-12 in MTL, ΦS1

and ΦS2
also have 12

layers, respectively. The architecture of θ is an FC layer.
We empirically find that a single FC layer is faster to train
and more effective for classification than multiple layers.
(see comparisons in the supplementary).

5.2. Ablation study setting

In order to show the effectiveness of our approach, we
design some ablative settings: two baselines without meta-
learning but more classic learning, three baselines of Fine-
Tuning (FT) on smaller number of parameters (Table 1), and
two MAML variants using our deeper pre-trained model
and HT meta-batch (Table 2 and Table 3). Note that the
alternative meta-learning operation to SS is the FT used in
MAML. Some bullet names are explained as follows.
update [Θ; θ] (or θ). There is no meta-training phase. Dur-
ing test phase, each task has its whole model [Θ; θ] (or the
classifier θ) updated on T (tr), and then tested on T (te).
FT [Θ4; θ] (or θ). These are straight-forward ways to define
a smaller set of meta-learner parameters than MAML. We
can freeze low-level pre-trained layers and meta-learn the
classifier layer θ with (or without) high-level CONV layer
Θ4 that is the 4th residual block of ResNet-12.

5.3. Results and analysis

Table 1, Table 2 and Table 3 present the overall results on
miniImageNet and FC100 datasets. Extensive comparisons
are done with ablative methods and the state-of-the-arts.
Note that tables present the highest accuracies for which
the iterations were chosen by validation. For the miniIma-

https://github.com/y2l/meta-transfer-learning-tensorflow

 0.4k 1k 5k 10k 15k
iterations

54

56

58

60

62

ac
cu

ra
cy

 (%
)

(a)

SS [Θ; θ], HT meta-batch
SS [Θ; θ], meta-batch

 0.4k 1k 5k 10k 15k
iterations

72

73

74

75

76
(b)

 0.4k 1k 5k 10k 15k
iterations

41

42

43

44

45
(c)

 0.4k 1k 5k 10k 15k
iterations

54

55

56

57

58
(d)

 0.4k 1k 5k 10k 15k
iterations

61.5

62

62.5

63

63.5
(e)

Figure 4. (a)(b) show the results of 1-shot and 5-shot on miniImageNet; (c)(d)(e) show the results of 1-shot, 5-shot and 10-shot on FC100.

geNet, iterations for 1-shot and 5-shot are at 17k and 14k,
respectively. For the FC100, iterations are all at 1k. Fig-
ure 4 shows the performance gap between with and without
HT meta-batch in terms of accuracy and converging speed.
Result overview on miniImageNet. In Table 2, we can
see that the proposed MTL with SS [Θ; θ], HT meta-batch
and ResNet-12(pre) achieves the best few-shot classifica-
tion performance with 61.2% for (5-class, 1-shot). Be-
sides, it tackles the (5-class, 5-shot) tasks with an accuracy
of 75.5% that is comparable to the state-of-the-art results,
i.e. 76.7%, reported by TADAM [34] whose model used
72 additional FC layers in the ResNet-12 arch. In terms of
the network arch, it is obvious that models using ResNet-
12 (pre) outperforms those using 4CONV by large mar-
gins, e.g. 4CONV models have the best 1-shot result with
50.44% [51] which is 10.8% lower than our best.
Result overview on FC100. In Table 3, we give the results
of TADAM using their reported numbers in the paper [34].
We used the public code of MAML [9] to get its results for
this new dataset. Comparing these methods, we can see that
MTL consistently outperforms MAML by large margins,
i.e. around 7% in all tasks; and surpasses TADAM by a
relatively larger number of 5% for 1-shot, and with 1.5%
and 1.8% respectively for 5-shot and 10-shot tasks.
MTL vs. No meta-learning. Table 1 shows the results
of No meta-learning on the top block. Compared to these,
our approach achieves significantly better performance even
without HT meta-batch, e.g. the largest margins are 10.2%
for 1-shot and 8.6% for 5-shot on miniImageNet. This val-
idates the effectiveness of our meta-learning method for
tackling few-shot learning problems. Between two No

miniImageNet FC100

1 (shot) 5 1 5 10

update [Θ; θ] 45.3 64.6 38.4 52.6 58.6
update θ 50.0 66.7 39.3 51.8 61.0

FT θ 55.9 71.4 41.6 54.9 61.1
FT [Θ4; θ] 57.2 71.6 40.9 54.3 61.3
FT [Θ; θ] 58.3 71.6 41.6 54.4 61.2

SS [Θ4; θ] 59.2 73.1 42.4 55.1 61.6
SS [Θ; θ](Ours) 60.2 74.3 43.6 55.4 62.4

Table 1. Classification accuracy (%) using ablative models, on two
datasets. “meta-batch” and “ResNet-12(pre)” are used.

meta-learning methods, we can see that updating both fea-
ture extractor Θ and classifier θ is inferior to updating θ
only, e.g. around 5% reduction on miniImageNet 1-shot.
One reason is that in few-shot settings, there are too many
parameters to optimize with little data. This supports our
motivation to learn only θ during base-learning.

Performance effects of MTL components. MTL with full
components, SS [Θ; θ], HT meta-batch and ResNet-12(pre),
achieves the best performances for all few-shot settings on
both datasets, see Table 2 and Table 3. We can conclude
that our large-scale network training on deep CNN signif-
icantly boost the few-shot learning performance. This is
an important gain brought by the transfer learning idea in
our MTL approach. It is interesting to note that this gain
on FC100 is not as large as for miniImageNet: only 1.7%,
1.0% and 4.0%. The possible reason is that FC100 tasks
for meta-train and meta-test are clearly split according to
super-classes. The data domain gap is larger than that for
miniImageNet, which makes transfer more difficult.

HT meta-batch and ResNet-12(pre) in our approach can
be generalized to other meta-learning models. MAML
4CONV with HT meta-batch gains averagely 1% on two
datasets. When changing 4CONV by deep ResNet-12 (pre)
it achieves significant improvements, e.g. 10% and 9% on
miniImageNet. Compared to MAML variants, our MTL re-
sults are consistently higher, e.g. 2.5% ∼ 3.3% on FC100.
People may argue that MAML fine-tuning(FT) all network
parameters is likely to overfit to few-shot data. In the mid-
dle block of Table 1, we show the ablation study of freezing
low-level pre-trained layers and meta-learn only the high-
level layers (e.g. the 4-th residual block of ResNet-12) by
the FT operations of MAML. These all yield inferior per-
formances than using our SS. An additional observation is
that SS* performs consistently better than FT*.

Speed of convergence of MTL. MAML [9] used 240k
tasks to achieve the best performance on miniImageNet.
Impressively, our MTL methods used only 8k tasks, see
Figure 4(a)(b) (note that each iteration contains 2 tasks).
This advantage is more obvious for FC100 on which MTL
methods need at most 2k tasks, Figure 4(c)(d)(e). We attest
this to two reasons. First, MTL starts from the pre-trained
ResNet-12. And second, SS (in MTL) needs to learn only
< 2

9 parameters of the number of FT (in MAML) when
using ResNet-12.

Few-shot learning method Feature extractor 1-shot 5-shot

Data augmentation
Adv. ResNet, [29] WRN-40 (pre) 55.2 69.6
Delta-encoder, [44] VGG-16 (pre) 58.7 73.6

Metric learning
MatchingNets, [53] 4 CONV 43.44 ± 0.77 55.31 ± 0.73

ProtoNets, [48] 4 CONV 49.42 ± 0.78 68.20 ± 0.66

RelationNets, [51] 4 CONV 50.44 ± 0.82 65.32 ± 0.70

Memory network
MetaNetworks, [31] 5 CONV 49.21 ± 0.96 –
SNAIL, [30] ResNet-12 (pre)� 55.71 ± 0.99 68.88 ± 0.92

TADAM, [34] ResNet-12 (pre)† 58.5 ± 0.3 76.7 ± 0.3

Gradient descent

MAML, [9] 4 CONV 48.70 ± 1.75 63.11 ± 0.92

Meta-LSTM, [39] 4 CONV 43.56 ± 0.84 60.60 ± 0.71

Hier.Bayes, [13] 4 CONV 49.40 ± 1.830 –
BilevelProgram, [11] ResNet-12� 50.54 ± 0.85 64.53 ± 0.68

MetaGAN, [60] ResNet-12 52.71 ± 0.64 68.63 ± 0.67

adaResNet, [32] ResNet-12‡ 56.88 ± 0.62 71.94 ± 0.57

MAML, HT FT [Θ; θ], HT meta-batch 4 CONV 49.1 ± 1.9 64.1 ± 0.9

MAML deep, HT FT [Θ; θ], HT meta-batch ResNet-12 (pre) 59.1 ± 1.9 73.1 ± 0.9

MTL (Ours) SS [Θ; θ], meta-batch ResNet-12 (pre) 60.2 ± 1.8 74.3 ± 0.9

SS [Θ; θ], HT meta-batch ResNet-12 (pre) 61.2 ± 1.8 75.5 ± 0.8

�Additional 2 convolutional layers ‡Additional 1 convolutional layer †Additional 72 fully connected layers

Table 2. The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet dataset. “pre” means pre-trained for a single classifi-
cation task using all training datapoints.

Few-shot learning method Feature extractor 1-shot 5-shot 10-shot

Gradient descent MAML, [9]‡ 4 CONV 38.1 ± 1.7 50.4 ± 1.0 56.2 ± 0.8

Memory network TADAM, [34] ResNet-12 (pre)† 40.1 ± 0.4 56.1 ± 0.4 61.6 ± 0.5

MAML, HT FT [Θ; θ], HT meta-batch 4 CONV 39.9 ± 1.8 51.7 ± 0.9 57.2 ± 0.8

MAML deep, HT FT [Θ; θ], HT meta-batch ResNet-12 (pre) 41.8 ± 1.9 55.1 ± 0.9 61.9 ± 0.8

MTL (Ours) SS [Θ; θ], meta-batch ResNet-12 (pre) 43.6 ± 1.8 55.4 ± 0.9 62.4 ± 0.8

SS [Θ; θ], HT meta-batch ResNet-12 (pre) 45.1 ± 1.8 57.6 ± 0.9 63.4 ± 0.8

†Additional 72 fully connected layers ‡Our implementation using the public code of MAML.
Table 3. The 5-way with 1-shot, 5-shot and 10-shot classification accuracy (%) on Fewshot-CIFAR100 (FC100) dataset. “pre” means
pre-trained for a single classification task using all training datapoints.

Speed of convergence of HT meta-batch. Figure 4
shows 1) MTL with HT meta-batch consistently achieves
higher performances than MTL with the conventional meta-
batch [9], in terms of the recognition accuracy in all set-
tings; and 2) it is impressive that MTL with HT meta-batch
achieves top performances early, after e.g. about 2k itera-
tions for 1-shot, 1k for 5-shot and 1k for 10-shot, on the
more challenging dataset – FC100.

6. Conclusions
In this paper, we show that our novel MTL trained with

HT meta-batch learning curriculum achieves the top perfor-
mance for tackling few-shot learning problems. The key op-
erations of MTL on pre-trained DNN neurons proved highly
efficient for adapting learning experience to the unseen task.
The superiority was particularly achieved in the extreme 1-

shot cases on two challenging benchmarks – miniImageNet
and FC100. In terms of learning scheme, HT meta-batch
showed consistently good performance for all baselines and
ablative models. On the more challenging FC100 bench-
mark, it showed to be particularly helpful for boosting con-
vergence speed. This design is independent from any spe-
cific model and could be generalized well whenever the
hardness of task is easy to evaluate in online iterations.

Acknowledgments
This research is part of NExT research which is

supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its IRC@SG Fund-
ing Initiative. It is also partially supported by German
Research Foundation (DFG CRC 1223), and National
Natural Science Foundation of China (61772359).

References
[1] S. Bartunov and D. P. Vetrov. Few-shot generative modelling

with generative matching networks. In AISTATS, 2018. 2
[2] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the op-

timization of a synaptic learning rule. In Optimality in Ar-
tificial and Biological Neural Networks, pages 6–8. Univ. of
Texas, 1992. 2

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In ICML, 2009. 2, 3

[4] O. Canévet and F. Fleuret. Large scale hard sample mining
with monte carlo tree search. In CVPR, 2016. 3

[5] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–
848, 2018. 2

[6] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus).
In ICLR, 2016. 1

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 3

[8] D. Erhan, Y. Bengio, A. C. Courville, P. Manzagol, P. Vin-
cent, and S. Bengio. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning Research,
11:625–660, 2010. 2

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017. 1, 2, 3, 4, 5, 6, 7, 8, 11

[10] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning. In NeurIPS, 2018. 2

[11] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil.
Bilevel programming for hyperparameter optimization and
meta-learning. In ICML, 2018. 6, 8

[12] H. E. Geoffrey and P. C. David. Using fast weights to deblur
old memories. In CogSci, 1987. 2

[13] E. Grant, C. Finn, S. Levine, T. Darrell, and T. L. Grif-
fiths. Recasting gradient-based meta-learning as hierarchical
bayes. In ICLR, 2018. 2, 6, 8

[14] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and
K. Kavukcuoglu. Automated curriculum learning for neu-
ral networks. In ICML, 2017. 3

[15] B. Harwood, V. Kumar, G. Carneiro, I. Reid, and T. Drum-
mond. Smart mining for deep metric learning. In ICCV,
2017. 3

[16] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask
R-CNN. In ICCV, 2017. 2

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 1, 4

[18] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and
K. Murphy. Speed/accuracy trade-offs for modern convolu-
tional object detectors. In CVPR, 2017. 2

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 6

[20] R. Keshari, M. Vatsa, R. Singh, and A. Noore. Learning
structure and strength of CNN filters for small sample size
training. In CVPR, 2018. 3

[21] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele.
Lucid data dreaming for object tracking. arXiv, 1703.09554,
2017. 1

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv, 1412.6980, 2014. 11

[23] A. Krizhevsky. Learning multiple layers of features from
tiny images. University of Toronto, 2009. 6

[24] Y. Lee and S. Choi. Gradient-based meta-learning with
learned layerwise metric and subspace. In ICML, 2018. 2

[25] F. Li, R. Fergus, and P. Perona. One-shot learning of ob-
ject categories. IEEE Trans. Pattern Anal. Mach. Intell.,
28(4):594–611, 2006. 1

[26] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to
learn quickly for few shot learning. In ICML, 2018. 2

[27] D. Lopez-Paz and M. Ranzato. Gradient episodic memory
for continual learning. In NIPS, 2017. 2, 4, 5

[28] M. McCloskey and N. J. Cohen. Catastrophic interference in
connectionist networks: The sequential learning problem. In
Psychology of learning and motivation, pages 3–17, 1989. 2,
4, 5

[29] A. Mehrotra and A. Dukkipati. Generative adversarial
residual pairwise networks for one shot learning. arXiv,
1703.08033, 2017. 1, 8

[30] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. Snail:
A simple neural attentive meta-learner. In ICLR, 2018. 2, 3,
6, 8

[31] T. Munkhdalai and H. Yu. Meta networks. In ICML, 2017.
2, 8

[32] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. Rapid
adaptation with conditionally shifted neurons. In ICML,
2018. 6, 8

[33] D. K. Naik and R. Mammone. Meta-neural networks that
learn by learning. In IJCNN, 1992. 2

[34] B. N. Oreshkin, P. Rodrı́guez, and A. Lacoste. TADAM: task
dependent adaptive metric for improved few-shot learning.
In NeurIPS, 2018. 1, 2, 3, 6, 7, 8, 11

[35] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain
adaptation via transfer component analysis. IEEE Trans.
Neural Networks, 22(2):199–210, 2011. 1, 2

[36] A. Pentina, V. Sharmanska, and C. H. Lampert. Curriculum
learning of multiple tasks. In CVPR, 2015. 3

[37] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C.
Courville. Film: Visual reasoning with a general condition-
ing layer. In AAAI, 2018. 3

[38] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot image
recognition by predicting parameters from activations. In
CVPR, 2018. 3

[39] S. Ravi and H. Larochelle. Optimization as a model for few-
shot learning. In ICLR, 2017. 2, 3, 6, 8

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision, 115(3):211–252, 2015. 4, 6

[41] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,
S. Osindero, and R. Hadsell. Meta-learning with latent em-
bedding optimization. In ICLR, 2019. 3

[42] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and
T. P. Lillicrap. Meta-learning with memory-augmented neu-
ral networks. In ICML, 2016. 2

[43] N. Sarafianos, T. Giannakopoulos, C. Nikou, and I. A. Kaka-
diaris. Curriculum learning for multi-task classification of
visual attributes. In ICCV Workshops, 2017. 3

[44] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder,
R. S. Feris, A. Kumar, R. Giryes, and A. M. Bronstein. Delta-
encoder: an effective sample synthesis method for few-shot
object recognition. In NeurIPS, 2018. 1, 8

[45] T. R. Scott, K. Ridgeway, and M. C. Mozer. Adapted deep
embeddings: A synthesis of methods for k-shot inductive
transfer learning. In NeurIPS, 2018. 3

[46] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 39(4):640–651, 2017. 1

[47] A. Shrivastava, A. Gupta, and R. B. Girshick. Training
region-based object detectors with online hard example min-
ing. In CVPR, 2016. 2, 3

[48] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks
for few-shot learning. In NIPS, 2017. 2, 8

[49] Q. Sun, L. Ma, S. Joon Oh, L. Van Gool, B. Schiele, and
M. Fritz. Natural and effective obfuscation by head inpaint-
ing. In CVPR, 2018. 2

[50] Q. Sun, B. Schiele, and M. Fritz. A domain based approach
to social relation recognition. In CVPR, 2017. 2

[51] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and
T. M. Hospedales. Learning to compare: Relation network
for few-shot learning. In CVPR, 2018. 2, 7, 8

[52] S. Thrun and L. Pratt. Learning to learn: Introduction and
overview. In Learning to learn, pages 3–17. Springer, 1998.
2

[53] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra. Matching networks for one shot learning. In
NIPS, 2016. 2, 3, 4, 6, 8

[54] Y. Wang, R. B. Girshick, M. Hebert, and B. Hariharan. Low-
shot learning from imaginary data. In CVPR, 2018. 1, 2

[55] Y. Wei, Y. Zhang, J. Huang, and Q. Yang. Transfer learning
via learning to transfer. In ICML, 2018. 2

[56] D. Weinshall, G. Cohen, and D. Amir. Curriculum learn-
ing by transfer learning: Theory and experiments with deep
networks. In ICML, 2018. 3

[57] J. Yang, R. Yan, and A. G. Hauptmann. Adapting SVM clas-
sifiers to data with shifted distributions. In ICDM Workshops,
2007. 2

[58] L. Yann, B. Yoshua, and H. Geoffrey. Deep learning. Nature,
521(7553):436, 2015. 1

[59] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik,
and S. Savarese. Taskonomy: Disentangling task transfer
learning. In CVPR, 2018. 2

[60] R. Zhang, T. Che, Z. Grahahramani, Y. Bengio, and Y. Song.
Metagan: An adversarial approach to few-shot learning. In
NeurIPS, 2018. 2, 8

Supplementary materials

These materials include the details of network architec-
ture (§A), implementation (§B), FC100 dataset splits (§C),
standard variance analysis (§D), additional ablation results
(§E), and some interpretation of our meta-learned model
(§F). In addition, our open-source code is on GitHub2.

A. Network architectures
In Figure S1, we present the 4CONV architecture for

feature extractor Θ, as illustrated in Section 5.1 “Network
architecture” of the main paper.

In Figure S2, we present the other architecture – ResNet-
12. Figure S2(a) shows the details of a single residual block
and Figure S2(b) shows the whole network consisting of
four residual blocks and a mean-pooling layer.

The input of Θ is the 3-channel RGB image, and the out-
put is the 512-dimensional feature vector. a = 0.1 is set for
all leakyReLU activation functions in ResNet-12.

B. Implementation details
For the phase of DNN training on large-scale data, the

model is trained by Adam optimizer [22]. Its learning rate is
initialized as 0.001, and decays to its half every 5k iterations
until it is lower that 0.0001. We set the keep probability of
the dropout as 0.9 and batch-size as 64. The pre-training
stops after 10k iterations. Note that for the hyperparame-
ter selection, we randomly choose 550 samples each class
as the training set, and the rest as validation. After the grid
search of hyperparameters, we fix them and mix up all sam-
ples (64 classes, 600 samples each class), in order to do the
final pre-training. Besides, these pre-training samples are
augmented with horizontal flip.

For the meta-train phase, we sample 5-class, 1-shot (5-
shot or 10-shot) episodes to contain 1 (5 or 10) sample(s) for
episode training, and 15 samples for episode test uniformly,
following the setting of MAML [9]. The base-learner θ is
optimized by batch gradient descent with the learning rate
of 0.01. It gets updated with 20 and 60 epochs respectively
for 1-shot and 5-shot tasks on the miniImageNet dataset,
and 20 epochs for all tasks on the FC100 dataset. The meta-
learner, i.e., the parameters of the SS operations, is opti-
mized by Adam optimizer [22]. Its learning rate is initial-
ized as 0.001, and decays to the half every 1k iterations until
0.0001. The size of meta-batch is set to 2 (tasks) due to the
memory limit.

Using our HT meta-batch strategy, hard tasks are sam-
pled every time after running 10 meta-batches, i.e., the fail-
ure classes used for sampling hard tasks are from 20 tasks.
The number of hard task is selected for different settings by
validation: 10 and 4 hard tasks respectively for the 1-shot

2https://github.com/yaoyao-liu/meta-transfer-learning

and 5-shot experiments on the miniImageNet dataset; and
respectively 20, 10 and 4 hard tasks for the 1-shot, 5-shot
and 10-shot experiments on the FC100 dataset.

For the meta-test phase, we sample 5-class, 1-shot (5-
shot or 10-shot) episodes and each episode contains 1 (5 or
10) sample(s) for both episode train and episode test. On
each dataset, we sample 600 meta-test tasks. All these set-
tings are exactly the same as MAML [9].

C. Super-class splits on FC100

In this section, we show the details of the FC100
splits according to the super-class labels, same with
TADAM [34].
Training split super-class indexes: 1, 2, 3, 4, 5,
6, 9, 10, 15, 17, 18, 19; and corresponding labels:
fish, flowers, food containers, fruit and vegetables, house-
hold electrical devices, household furniture, large man-
made outdoor things, large natural outdoor scenes, rep-
tiles, trees, vehicles 1, vehicles 2.
Validation split super-class indexes: 8, 11, 13,
16; and corresponding labels: large carnivores,
large omnivores and herbivores, non-insect invertebrates,
small mammals.
Test split super-class indexes: 0, 7, 12, 14; and correspond-
ing labels: aquatic mammals, insects, medium mammals,
people.

An episode (task) is independently sampled from a cor-
responding split, e.g. a meta-train episode contains 5 classes
that can only be belonging to the 12 super-classes in the
training split. Therefore, there is no fine-grained informa-
tion overlap between meta-train and meta-test tasks.

D. Standard variance analysis

The final accuracy results reported in our main paper are
the mean values and standard variances of the results of 600
meta-test tasks. The standard variance is affected by the
number of episode test samples. As introduced in §B, we
use the same setting as MAML [9] which used a smaller
number of samples for episode test (1 sample for 1-shot
episode test and 5 samples for 5-shot), making the result
variance higher. Other works that used more samples for
episode test got lower variances, e.g., TADAM [34] used
100 samples and its variances are about 1

6 and 1
3 of MAML’s

respectively for miniImageNet 1-shot and 5-shot.
In order to have a fair comparison with TADAM in terms

of this issue, we supplement the experiments using 100
episode test samples at the meta-test. We get the new con-
fidence intervals (using our method: MTL w/o HT meta-
batch) as 0.71% (0.3% for TADAM) and 0.54% (0.3% for
TADAM) respectively for 1-shot and 5-shot on the mini-
ImageNet dataset, and 0.70% (0.4% for TADAM), 0.63%

https://github.com/yaoyao-liu/meta-transfer-learning

(0.4% for TADAM) and 0.58% (0.5% for TADAM) respec-
tively for 1-shot, 5-shot and 10-shot on the FC100 dataset.

E. Additional ablation study
We supplement the results in Table S1, for the compar-

isons mentioned in Section 5.1 of main paper. Red numbers
on the bottom row are copied from the main paper (corre-
sponding to the MTL setting: SS Θ, meta-batch) and shown
here for the convenience of comparison.

To get the first row, we train 4CONV net by large-scale
data (same to the pre-training of ResNet-12) and get infe-
rior results, as we declared in the main paper. Results on
the second and third rows show the performance drop when
changing the single FC layer θ to multiple layers, e.g. 2 FC
layers and 3 FC layers. Results on the fourth row show the
performance drop when updating both Θ and θ for the base-
learning. The reason is that Θ has too many parameters to
update with too little data.

F. Interpretation of meta-learned SS
In Figure S3, we show the statistic histograms of learned

SS parameters, taking miniImageNet 1-shot as an exam-
ple setting. Scaling parameters ΦS1

are initialized as 1
and shifting parameters ΦS1

as 0. After meta-train, we
observe that these statistics are close to Gaussian distri-
butions respectively with (0.9962, 0.0084) and (0.0003,
0.0002) as (mean, variance) values, which shows that the
uniform initialization has been changed to Gaussian distri-
bution through few-shot learning. Possible interpretations
are in three-fold: 1) majority patterns trained by a large
number of few-shot tasks are close to the ones trained by
large-scale data; 2) tail patterns with clear scale and shift
values are the ones really contributing to adapting the model
to few-shot tasks; 3) tail patterns are of small quantity, en-
abling the fast learning convergence.

Meta-learning Base-learning FC dim of θ Feature extractor
miniImageNet FC100

1-shot 5-shot 1-shot 5-shot 10-shot

ΦS1 , ΦS2 θ 5 4 CONV (pre) 45.6 ± 1.8 61.2 ± 0.9 38.0 ± 1.6 46.4 ± 0.9 56.5 ± 0.8

ΦS1 , ΦS2 θ (2-layer) 512, 5 ResNet-12 (pre) 59.1 ± 1.9 70.7 ± 0.9 40.3 ± 1.9 53.3 ± 0.9 54.1 ± 0.8
ΦS1 , ΦS2 θ (3-layer) 1024, 512, 5 ResNet-12 (pre) 56.2 ± 1.8 68.7 ± 0.9 40.0 ± 1.8 52.3 ± 1.0 53.8 ± 0.8

ΦS1 , ΦS2 Θ, θ 5 ResNet-12 (pre) 59.6 ± 1.8 71.6 ± 0.9 43.3 ± 1.9 54.6 ± 1.0 60.7 ± 0.8

ΦS1 , ΦS2 θ 5 ResNet-12 (pre) 60.2 ± 1.8 74.3 ± 0.9 43.6 ± 1.8 55.4 ± 0.9 62.4 ± 0.8

Table S1. Additional ablative study. On the last row, we show the red numbers which are reported in our main paper (corresponding to the
MTL setting: SS [Θ; θ], meta-batch).

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

3 × 3 conv, 32 filters
batch norm,

ReLU,
2 × 2 max-pool

Figure S1. Network architecture of 4CONV

3 × 3 conv, D filters
batch norm,
leaky ReLU

3 × 3 conv, D filters
batch norm,
leaky ReLU

3 × 3 conv, D filters
batch norm,
leaky ReLU

1 × 1 conv, D filters

2 × 2 max-pool
dropout

(a) Residual block, D filters

(b) Feature extractor

Residual block
64 filters

Residual block
128 filters

Residual block
256 filters

Residual block
512 filters 5 × 5 mean pool

Figure S2. Network architecture of ResNet-12

≤0
.5

0
(0

.5
1

, 0
.5

2
]

(0
.5

3
, 0

.5
4

]
(0

.5
5

, 0
.5

6
]

(0
.5

7
, 0

.5
8

]
(0

.5
9

, 0
.6

0
]

(0
.6

1
, 0

.6
2

]
(0

.6
3

, 0
.6

4
]

(0
.6

5
, 0

.6
6

]
(0

.6
7

, 0
.6

8
]

(0
.6

9
, 0

.7
0

]
(0

.7
1

, 0
.7

2
]

(0
.7

3
, 0

.7
4

]
(0

.7
5

, 0
.7

6
]

(0
.7

7
, 0

.7
8

]
(0

.7
9

, 0
.8

0
]

(0
.8

1
, 0

.8
2

]
(0

.8
3

, 0
.8

4
]

(0
.8

5
, 0

.8
6

]
(0

.8
7

, 0
.8

8
]

(0
.8

9
, 0

.9
0

]
(0

.9
1

, 0
.9

2
]

(0
.9

3
, 0

.9
4

]
(0

.9
5

, 0
.9

6
]

(0
.9

7
, 0

.9
8

]
(0

.9
9

, 1
.0

0
]

(1
.0

1
, 1

.0
2

]
(1

.0
3

, 1
.0

4
]

(1
.0

5
, 1

.0
6

]
(1

.0
7

, 1
.0

8
]

(1
.0

9
, 1

.1
0

]
(1

.1
1

, 1
.1

2
]

(1
.1

3
, 1

.1
4

]
(1

.1
5

, 1
.1

6
]

(1
.1

7
, 1

.1
8

]
(1

.1
9

, 1
.2

0
]

(1
.2

1
, 1

.2
2

]
(1

.2
3

, 1
.2

4
]

(1
.2

5
, 1

.2
6

]
(1

.2
7

, 1
.2

8
]

(1
.2

9
, 1

.3
0

]
(1

.3
1

, 1
.3

2
]

(1
.3

3
, 1

.3
4

]
(1

.3
5

, 1
.3

6
]

(1
.3

7
, 1

.3
8

]
(1

.3
9

, 1
.4

0
]

(1
.4

1
, 1

.4
2

]
(1

.4
3

, 1
.4

4
]

(1
.4

5
, 1

.4
6

]
(1

.4
7

, 1
.4

8
]

(1
.4

9
, 1

.5
0

]

0

1000

2000

3000

4000

5000

6000

7000

8000

≤
-0

.0
5

(-
0.

05
, -

0.
05

]

(-
0.

05
, -

0.
04

]

(-
0.

04
, -

0.
04

]

(-
0.

04
, -

0.
03

]

(-
0.

03
, -

0.
03

]

(-
0.

03
, -

0.
02

]

(-
0.

02
, -

0.
02

]

(-
0.

02
, -

0.
01

]

(-
0.

01
, -

0.
01

]

(-
0.

01
, 0

.0
0

]

(0
.0

0
, 0

.0
1

]

(0
.0

1
, 0

.0
1

]

(0
.0

1
, 0

.0
2

]

(0
.0

2
, 0

.0
2

]

(0
.0

2
, 0

.0
3

]

(0
.0

3
, 0

.0
3

]

(0
.0

3
, 0

.0
4

]

(0
.0

4
, 0

.0
4

]

(0
.0

4
, 0

.0
5

]

(0
.0

5
, 0

.0
5

]

>
0.

05

0

100

200

300

400

500

600

700

800

Figure S3. The statistic histograms of learned SS parameters, taking miniImageNet 1-shot as an example setting.

